Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
PLoS Genet ; 13(3): e1006614, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28301465

RESUMO

Structural Maintenance of Chromosomes (SMC) family proteins participate in multisubunit complexes that govern chromosome structure and dynamics. SMC-containing condensin complexes create chromosome topologies essential for mitosis/meiosis, gene expression, recombination, and repair. Many eukaryotes have two condensin complexes (I and II); C. elegans has three (I, II, and the X-chromosome specialized condensin IDC) and their regulation is poorly understood. Here we identify a novel SMC-like protein, SMCL-1, that binds to C. elegans condensin SMC subunits, and modulates condensin functions. Consistent with a possible role as a negative regulator, loss of SMCL-1 partially rescued the lethal and sterile phenotypes of a hypomorphic condensin mutant, while over-expression of SMCL-1 caused lethality, chromosome mis-segregation, and disruption of condensin IDC localization on X chromosomes. Unlike canonical SMC proteins, SMCL-1 lacks hinge and coil domains, and its ATPase domain lacks conserved amino acids required for ATP hydrolysis, leading to the speculation that it may inhibit condensin ATPase activity. SMCL-1 homologs are apparent only in the subset of Caenorhabditis species in which the condensin I and II subunit SMC-4 duplicated to create the condensin IDC- specific subunit DPY-27, suggesting that SMCL-1 helps this lineage cope with the regulatory challenges imposed by evolution of a third condensin complex. Our findings uncover a new regulator of condensins and highlight how the duplication and divergence of SMC complex components in various lineages has created new proteins with diverse functions in chromosome dynamics.


Assuntos
Adenosina Trifosfatases/genética , Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Proteínas de Ligação a DNA/genética , Complexos Multiproteicos/genética , Adenosina Trifosfatases/metabolismo , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/classificação , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Meiose/genética , Microscopia Confocal , Mitose/genética , Complexos Multiproteicos/metabolismo , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Filogenia , Ligação Proteica , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Homologia de Sequência de Aminoácidos , Cromossomo X/genética
2.
Mol Cell Proteomics ; 11(8): 501-11, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22474084

RESUMO

Determining the localization, binding partners, and secondary modifications of individual proteins is crucial for understanding protein function. Several tags have been constructed for protein localization or purification under either native or denaturing conditions, but few tags permit all three simultaneously. Here, we describe a multifunctional tandem affinity purification (MAP) method that is both highly efficient and enables protein visualization. The MAP tag utilizes affinity tags inserted into an exposed surface loop of mVenus offering two advantages: (1) mVenus fluorescence can be used for protein localization or FACS-based selection of cell lines; and (2) spatial separation of the affinity tags from the protein results in high recovery and reduced variability between proteins. MAP purification was highly efficient in multiple organisms for all proteins tested. As a test case, MAP combined with liquid chromatography-tandem MS identified known and new candidate binding partners and modifications of the kinase Plk1. Thus the MAP tag is a new powerful tool for determining protein modification, localization, and interactions.


Assuntos
Proteínas de Caenorhabditis elegans/análise , Cromatografia de Afinidade/métodos , Proteínas de Schizosaccharomyces pombe/análise , Espectrometria de Massas em Tandem/métodos , Sequência de Aminoácidos , Animais , Sequência de Bases , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Linhagem Celular Tumoral , Cromatografia Líquida/métodos , Humanos , Immunoblotting , Imunoprecipitação , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia de Fluorescência , Dados de Sequência Molecular , Proteômica/métodos , Proteínas Recombinantes de Fusão/análise , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Reprodutibilidade dos Testes , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
3.
PLoS Genet ; 7(5): e1002074, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21589891

RESUMO

DRM is a conserved transcription factor complex that includes E2F/DP and pRB family proteins and plays important roles in development and cancer. Here we describe new aspects of DRM binding and function revealed through genome-wide analyses of the Caenorhabditis elegans DRM subunit LIN-54. We show that LIN-54 DNA-binding activity recruits DRM to promoters enriched for adjacent putative E2F/DP and LIN-54 binding sites, suggesting that these two DNA-binding moieties together direct DRM to its target genes. Chromatin immunoprecipitation and gene expression profiling reveals conserved roles for DRM in regulating genes involved in cell division, development, and reproduction. We find that LIN-54 promotes expression of reproduction genes in the germline, but prevents ectopic activation of germline-specific genes in embryonic soma. Strikingly, C. elegans DRM does not act uniformly throughout the genome: the DRM recruitment motif, DRM binding, and DRM-regulated embryonic genes are all under-represented on the X chromosome. However, germline genes down-regulated in lin-54 mutants are over-represented on the X chromosome. We discuss models for how loss of autosome-bound DRM may enhance germline X chromosome silencing. We propose that autosome-enriched binding of DRM arose in C. elegans as a consequence of germline X chromosome silencing and the evolutionary redistribution of germline-expressed and essential target genes to autosomes. Sex chromosome gene regulation may thus have profound evolutionary effects on genome organization and transcriptional regulatory networks.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Cromossomos , Regulação da Expressão Gênica , Fatores de Transcrição/metabolismo , Animais
4.
G3 (Bethesda) ; 4(1): 143-53, 2014 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-24281426

RESUMO

During animal development, gene transcription is tuned to tissue-appropriate levels. Here we uncover antagonistic regulation of transcript levels in the germline of Caenorhabditis elegans hermaphrodites. The histone methyltransferase MES-4 (Maternal Effect Sterile-4) marks genes expressed in the germline with methylated lysine on histone H3 (H3K36me) and promotes their transcription; MES-4 also represses genes normally expressed in somatic cells and genes on the X chromosome. The DRM transcription factor complex, named for its Dp/E2F, Retinoblastoma-like, and MuvB subunits, affects germline gene expression and prevents excessive repression of X-chromosome genes. Using genome-scale analyses of germline tissue, we show that common germline-expressed genes are activated by MES-4 and repressed by DRM, and that MES-4 and DRM co-bind many germline-expressed genes. Reciprocally, MES-4 represses and DRM activates a set of autosomal soma-expressed genes and overall X-chromosome gene expression. Mutations in mes-4 and the DRM subunit lin-54 oppositely skew the transcript levels of their common targets and cause sterility. A double mutant restores target gene transcript levels closer to wild type, and the concomitant loss of lin-54 suppresses the severe germline proliferation defect observed in mes-4 single mutants. Together, "yin-yang" regulation by MES-4 and DRM ensures transcript levels appropriate for germ-cell function, elicits robust but not excessive dampening of X-chromosome-wide transcription, and may poise genes for future expression changes. Our study reveals that conserved transcriptional regulators implicated in development and cancer counteract each other to fine-tune transcript dosage.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Células Germinativas/metabolismo , Cromossomo X/metabolismo , Animais , Proteínas de Caenorhabditis elegans/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Análise em Microsséries , Transativadores/genética , Transativadores/metabolismo , Cromossomo X/genética
5.
Nat Rev Genet ; 4(7): 520-34, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12838344

RESUMO

Two related protein complexes, cohesin and condensin, are essential for separating identical copies of the genome into daughter cells during cell division. Cohesin glues replicated sister chromatids together until they split at anaphase, whereas condensin reorganizes chromosomes into their highly compact mitotic structure. Unexpectedly, mutations in the subunits of these complexes have been uncovered in genetic screens that target completely different processes. Exciting new evidence is emerging that cohesin and condensin influence crucial processes during interphase, and unforeseen aspects of mitosis. Each complex can perform several roles, and individual subunits can associate with different sets of proteins to achieve diverse functions, including the regulation of gene expression, DNA repair, cell-cycle checkpoints and centromere organization.


Assuntos
Adenosina Trifosfatases/fisiologia , Proteínas de Ligação a DNA/fisiologia , Proteínas Nucleares/fisiologia , Animais , Proteínas de Ciclo Celular , Cromatina/fisiologia , Proteínas Cromossômicas não Histona , Replicação do DNA/fisiologia , Proteínas Fúngicas , Humanos , Complexos Multiproteicos , Saccharomyces cerevisiae/metabolismo , Coesinas
7.
Genes Dev ; 16(6): 729-42, 2002 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-11914278

RESUMO

Chromosome segregation and X-chromosome gene regulation in Caenorhabditis elegans share the component MIX-1, a mitotic protein that also represses X-linked genes during dosage compensation. MIX-1 achieves its dual roles through interactions with different protein partners. To repress gene expression, MIX-1 acts in an X-chromosome complex that resembles the mitotic condensin complex yet lacks chromosome segregation function. Here we show that MIX-1 interacts with a mitotic condensin subunit, SMC-4, to achieve chromosome segregation. The SMC-4/MIX-1 complex positively supercoils DNA in vitro and is required for mitotic chromosome structure and segregation in vivo. Thus, C. elegans has two condensin complexes, one conserved for mitosis and another specialized for gene regulation. SMC-4 and MIX-1 colocalize with centromere proteins on condensed mitotic chromosomes and are required for the restricted orientation of centromeres toward spindle poles. This cell cycle-dependent localization requires AIR-2/AuroraB kinase. Depletion of SMC-4/MIX-1 causes aberrant mitotic chromosome structure and segregation, but not dramatic decondensation at metaphase. Moreover, SMC-4/MIX-1 depletion disrupts sister chromatid segregation during meiosis II but not homologous chromosome segregation during meiosis I, although both processes require chromosome condensation. These results imply that condensin is not simply required for compaction, but plays a more complex role in chromosome architecture that is essential for mitotic and meiotic sister chromatid segregation.


Assuntos
Adenosina Trifosfatases/fisiologia , Proteínas de Caenorhabditis elegans , Caenorhabditis elegans/metabolismo , Proteínas de Ligação a DNA/fisiologia , Proteínas de Saccharomyces cerevisiae , Proteínas de Schizosaccharomyces pombe , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Animais , Aurora Quinase A , Aurora Quinase B , Aurora Quinases , Caenorhabditis elegans/química , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Centrômero/química , Centrômero/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , DNA Super-Helicoidal , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Mecanismo Genético de Compensação de Dose , Ligação Genética , Proteínas de Helminto/metabolismo , Histonas/metabolismo , Hibridização in Situ Fluorescente , Meiose , Microscopia de Fluorescência , Mitose , Complexos Multiproteicos , Fosforilação , Testes de Precipitina , Ligação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , RNA Bacteriano/metabolismo , Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética , Troca de Cromátide Irmã , Fatores de Tempo , Cromossomo X , Xenopus laevis/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA