Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
New Phytol ; 227(3): 744-756, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32242938

RESUMO

Biodiversity-ecosystem functioning experiments found that productivity generally increases with species richness, but less is known about effects of within-species genetic richness and potential interactions between the two. While functional differences between species can explain species richness effects, empirical evidence regarding functional differences between genotypes within species and potential consequences for productivity is largely lacking. We therefore measured within- and among-species variation in functional traits and growth and determined stand-level tree biomass in a large forest experiment factorially manipulating species and genetic richness in subtropical China. Within-species variation across genetic seed families, in addition to variation across species, explained a substantial amount of trait variation. Furthermore, trait responses to species and genetic richness varied significantly within and between species. Multivariate trait variation was larger among individuals from species mixtures than those from species monocultures, but similar among individuals from genetically diverse vs genetically uniform monocultures. Correspondingly, species but not genetic richness had a positive effect on stand-level tree biomass. We argue that identifying functional diversity within and among species in forest communities is necessary to separate effects of species and genetic diversity on tree growth and community productivity.


Assuntos
Ecossistema , Árvores , Biodiversidade , Biomassa , China , Florestas , Árvores/genética
2.
Commun Biol ; 4(1): 516, 2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33941844

RESUMO

Drought imposes stress on plants and associated soil microbes, inducing coordinated adaptive responses, which can involve plant-soil signalling via phytohormones. However, we know little about how microbial communities respond to phytohormones, or how these responses are shaped by chronic (long-term) drought. Here, we added three phytohormones (abscisic acid, 1-aminocyclopropane-1-carboxylic acid, and jasmonic acid) to soils from long-term (25-year), field-based climate treatments to test the hypothesis that chronic drought alters soil microbial community responses to plant stress signalling. Phytohormone addition increased soil respiration, but this effect was stronger in irrigated than in droughted soils and increased soil respiration at low phytohormone concentrations could not be explained by their use as substrate. Thus, we show that drought adaptation within soil microbial communities modifies their responses to phytohormone inputs. Furthermore, distinct phytohormone-induced shifts in microbial functional groups in droughted vs. irrigated soils might suggest that drought-adapted soil microorganisms perceive phytohormones as stress-signals, allowing them to anticipate impending drought.


Assuntos
Adaptação Fisiológica , Secas , Microbiota/efeitos dos fármacos , Reguladores de Crescimento de Plantas/farmacologia , Plantas/microbiologia , Microbiologia do Solo , Solo/química , Plantas/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA