Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Acoust Soc Am ; 152(3): 1932, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36182282

RESUMO

Project-based learning engages students in practical activities related to course content and has been demonstrated to improve academic performance. Due to its reported benefits, this form of active learning was incorporated with an ongoing research project into an introductory, graduate-level Musical Acoustics course at the Peabody Institute of The Johns Hopkins University. Students applied concepts from the course to characterize a contact sensor with a polymer diaphragm for musical instrument recording. Assignments throughout the semester introduced students to completing a literature review, planning an experiment, collecting and analyzing data, and presenting results. While students were given broad goals to understand the performance of the contact sensor compared to traditional microphones, they were allowed independence in determining the specific methods used. The efficacy of the course framework and research project was assessed with student feedback provided through open-ended prompts and Likert-type survey questions. Overall, the students responded positively to the project-based learning and demonstrated mastery of the course learning objectives. The work provides a possible framework for instructors considering using project-based learning through research in their own course designs.


Assuntos
Acústica , Aprendizagem Baseada em Problemas , Retroalimentação , Humanos
2.
ACS Appl Bio Mater ; 6(8): 3241-3256, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37470762

RESUMO

Acoustic sensors are able to capture more incident energy if their acoustic impedance closely matches the acoustic impedance of the medium being probed, such as skin or wood. Controlling the acoustic impedance of polymers can be achieved by selecting materials with appropriate densities and stiffnesses as well as adding ceramic nanoparticles. This study follows a statistical methodology to examine the impact of polymer type and nanoparticle addition on the fabrication of acoustic sensors with desired acoustic impedances in the range of 1-2.2 MRayls. The proposed method using a design of experiments approach measures sensors with diaphragms of varying impedances when excited with acoustic vibrations traveling through wood, gelatin, and plastic. The sensor diaphragm is subsequently optimized for body sound monitoring, and the sensor's improved body sound coherence and airborne noise rejection are evaluated on an acoustic phantom in simulated noise environments and compared to electronic stethoscopes with onboard noise cancellation. The impedance-matched sensor demonstrates high sensitivity to body sounds, low sensitivity to airborne sound, a frequency response comparable to two state-of-the-art electronic stethoscopes, and the ability to capture lung and heart sounds from a real subject. Due to its small size, use of flexible materials, and rejection of airborne noise, the sensor provides an improved solution for wearable body sound monitoring, as well as sensing from other mediums with acoustic impedances in the range of 1-2.2 MRayls, such as water and wood.


Assuntos
Acústica , Diafragma , Impedância Elétrica , Eletricidade Estática , Vibração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA