Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Exp Mol Pathol ; 120: 104634, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33773991

RESUMO

Lung and colorectal cancers (CRC) have two of the highest mortality rates among all cancer types, and their occurrence and the need for personalized diagnostics and subsequent therapy were not influenced by the COVID-19 pandemics. However, due to the disruption of established delivery chains, standard assays for in vitro diagnostics of those cancers were temporarily not available, forcing us to implement alternative testing methods that enabled at least basic therapy decision making. For this reason, we evaluated rapid testing on the Biocartis Idylla™ platform (Biocartis, Mechelen, Belgium) for four important genes commonly mutated in lung and colorectal cancers, namely EGFR, NRAS, KRAS, and BRAF. Clinical specimens from which the mutation status has previously been determined using Next Generation Sequencing (NGS), were retested to determine whether Idylla™ can offer accurate results. To compare the results, the sensitivity, specificity, positive predictive values (PPV) and negative predictive values (NPV) are calculated for each of the mutation types and then combined to determine the values of the Idylla™ system in total, while setting NGS as the gold-standard basis the assays were compared with. Idylla testing thereby displayed acceptable sensitivity and specificity and delivered reliable results for initial therapy decisions.


Assuntos
Análise Mutacional de DNA/métodos , GTP Fosfo-Hidrolases/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Proteínas de Membrana/genética , Mutação , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , COVID-19/epidemiologia , COVID-19/prevenção & controle , COVID-19/virologia , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética , Receptores ErbB/genética , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Pandemias , Reprodutibilidade dos Testes , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/fisiologia , Sensibilidade e Especificidade
2.
Arch Med Res ; 54(6): 102855, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37481823

RESUMO

BACKGROUND AND AIM: While preliminary evidence points to pro-tumorigenic roles for the Musashi (MSI) RNA-binding proteins Musashi-1 (MSI1) and Musashi-2 (MSI2) in some breast cancer subtypes, no data exist for inflammatory breast cancer (IBC). METHODS: MSI gene expression was quantified in IBC SUM149PT cells. We then used small interfering RNA-based MSI1 and MSI2 double knockdown (DKD) to understand gene expression and functional changes upon MSI depletion. We characterized cancer stem cell characteristics, cell apoptosis and cell cycle progression via flow cytometry, mammospheres via spheroid assays, migration and proliferation via digital holographic microscopy, and cell viability using BrdU assays. Chemoresistance was determined for paclitaxel and cisplatin with MTT assays and radioresistance was assessed with clonogenic analyses. In parallel, we supported our in vitro data by analyzing publicly available patient IBC gene expression datasets. RESULTS: MSI1 and MSI2 are upregulated in breast cancer generally and IBC specifically. MSI2 is more commonly expressed compared to MSI1. MSI DKD attenuated proliferation, cell cycle progression, migration, and cell viability while increasing apoptosis. Stem cell characteristics CD44(+)/CD24(-), TERT and Oct4 were associated with MSI expression in vivo and were decreased in vitro after MSI DKD as was ALDH expression and mammosphere formation. In vivo, chemoresistant tumors were characterized by MSI upregulation upon chemotherapy application. In vitro, MSI DKD was able to alleviate chemo- and radioresistance. CONCLUSIONS: The Musashi RNA binding proteins are dysregulated in IBC and associated with tumor proliferation, cancer stem cell phenotype, chemo- and radioresistance. MSI downregulation alleviates therapy resistance and attenuates tumor proliferation in vitro.


Assuntos
Neoplasias Inflamatórias Mamárias , Neoplasias , Humanos , Neoplasias Inflamatórias Mamárias/tratamento farmacológico , Neoplasias Inflamatórias Mamárias/genética , Neoplasias Inflamatórias Mamárias/metabolismo , Neoplasias/patologia , Células-Tronco Neoplásicas/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proliferação de Células , Proteínas de Ligação a RNA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA