RESUMO
Reactive iodine plays a key role in determining the oxidation capacity, or cleansing capacity, of the atmosphere in addition to being implicated in the formation of new particles in the marine boundary layer. The postulation that heterogeneous cycling of reactive iodine on aerosols may significantly influence the lifetime of ozone in the troposphere not only remains poorly understood but also heretofore has never been observed or quantified in the field. Here, we report direct ambient observations of hypoiodous acid (HOI) and heterogeneous recycling of interhalogen product species (i.e., iodine monochloride [ICl] and iodine monobromide [IBr]) in a midlatitude coastal environment. Significant levels of ICl and IBr with mean daily maxima of 4.3 and 3.0 parts per trillion by volume (1-min average), respectively, have been observed throughout the campaign. We show that the heterogeneous reaction of HOI on marine aerosol and subsequent production of iodine interhalogens are much faster than previously thought. These results indicate that the fast formation of iodine interhalogens, together with their rapid photolysis, results in more efficient recycling of atomic iodine than currently considered in models. Photolysis of the observed ICl and IBr leads to a 32% increase in the daytime average of atomic iodine production rate, thereby enhancing the average daytime iodine-catalyzed ozone loss rate by 10 to 20%. Our findings provide direct field evidence that the autocatalytic mechanism of iodine release from marine aerosol is important in the atmosphere and can have significant impacts on atmospheric oxidation capacity.
RESUMO
The pressure dependence of carbonyl oxide (Criegee intermediate) stabilization can be measured via H2SO4 detection using chemical ionization mass spectrometry. By selectively scavenging OH radicals in a flow reactor containing an alkene, O3, and SO2, we measure an H2SO4 ratio related to the Criegee intermediate stabilization, and by performing experiments at multiple pressures, we constrain the pressure dependence of the stabilization. Here, we present results from a set of monoterpenes as well as isoprene, along with previously published results from tetramethylethylene and a sequence of symmetrical trans alkenes. We are able to reproduce the observations with a physically sensible set of parameters related to standard pressure falloff functions, providing both a consistent picture of the reaction dynamics and a method to describe the pressure stabilization following ozonolysis of all alkenes under a wide range of atmospheric conditions.
RESUMO
Atmospheric aerosols and their effect on clouds are thought to be important for anthropogenic radiative forcing of the climate, yet remain poorly understood. Globally, around half of cloud condensation nuclei originate from nucleation of atmospheric vapours. It is thought that sulfuric acid is essential to initiate most particle formation in the atmosphere, and that ions have a relatively minor role. Some laboratory studies, however, have reported organic particle formation without the intentional addition of sulfuric acid, although contamination could not be excluded. Here we present evidence for the formation of aerosol particles from highly oxidized biogenic vapours in the absence of sulfuric acid in a large chamber under atmospheric conditions. The highly oxygenated molecules (HOMs) are produced by ozonolysis of α-pinene. We find that ions from Galactic cosmic rays increase the nucleation rate by one to two orders of magnitude compared with neutral nucleation. Our experimental findings are supported by quantum chemical calculations of the cluster binding energies of representative HOMs. Ion-induced nucleation of pure organic particles constitutes a potentially widespread source of aerosol particles in terrestrial environments with low sulfuric acid pollution.
Assuntos
Aerossóis/química , Atmosfera/química , Mudança Climática , Íons/química , Oxigênio/química , Material Particulado/química , Poluição do Ar/análise , Monoterpenos Bicíclicos , Radiação Cósmica , Atividades Humanas , Monoterpenos/química , Oxirredução , Ozônio/química , Tamanho da Partícula , Teoria Quântica , Ácidos Sulfúricos/análise , VolatilizaçãoRESUMO
Nucleation of aerosol particles from trace atmospheric vapours is thought to provide up to half of global cloud condensation nuclei. Aerosols can cause a net cooling of climate by scattering sunlight and by leading to smaller but more numerous cloud droplets, which makes clouds brighter and extends their lifetimes. Atmospheric aerosols derived from human activities are thought to have compensated for a large fraction of the warming caused by greenhouse gases. However, despite its importance for climate, atmospheric nucleation is poorly understood. Recently, it has been shown that sulphuric acid and ammonia cannot explain particle formation rates observed in the lower atmosphere. It is thought that amines may enhance nucleation, but until now there has been no direct evidence for amine ternary nucleation under atmospheric conditions. Here we use the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber at CERN and find that dimethylamine above three parts per trillion by volume can enhance particle formation rates more than 1,000-fold compared with ammonia, sufficient to account for the particle formation rates observed in the atmosphere. Molecular analysis of the clusters reveals that the faster nucleation is explained by a base-stabilization mechanism involving acid-amine pairs, which strongly decrease evaporation. The ion-induced contribution is generally small, reflecting the high stability of sulphuric acid-dimethylamine clusters and indicating that galactic cosmic rays exert only a small influence on their formation, except at low overall formation rates. Our experimental measurements are well reproduced by a dynamical model based on quantum chemical calculations of binding energies of molecular clusters, without any fitted parameters. These results show that, in regions of the atmosphere near amine sources, both amines and sulphur dioxide should be considered when assessing the impact of anthropogenic activities on particle formation.
Assuntos
Aminas/química , Atmosfera/química , Material Particulado/química , Ácidos Sulfúricos/química , Radiação Cósmica , Dimetilaminas/química , Efeito Estufa , Atividades Humanas , Modelos Químicos , Teoria Quântica , Dióxido de Enxofre/químicaRESUMO
The magnitude of aerosol radiative forcing caused by anthropogenic emissions depends on the baseline state of the atmosphere under pristine preindustrial conditions. Measurements show that particle formation in atmospheric conditions can occur solely from biogenic vapors. Here, we evaluate the potential effect of this source of particles on preindustrial cloud condensation nuclei (CCN) concentrations and aerosol-cloud radiative forcing over the industrial period. Model simulations show that the pure biogenic particle formation mechanism has a much larger relative effect on CCN concentrations in the preindustrial atmosphere than in the present atmosphere because of the lower aerosol concentrations. Consequently, preindustrial cloud albedo is increased more than under present day conditions, and therefore the cooling forcing of anthropogenic aerosols is reduced. The mechanism increases CCN concentrations by 20-100% over a large fraction of the preindustrial lower atmosphere, and the magnitude of annual global mean radiative forcing caused by changes of cloud albedo since 1750 is reduced by [Formula: see text] (27%) to [Formula: see text] Model uncertainties, relatively slow formation rates, and limited available ambient measurements make it difficult to establish the significance of a mechanism that has its dominant effect under preindustrial conditions. Our simulations predict more particle formation in the Amazon than is observed. However, the first observation of pure organic nucleation has now been reported for the free troposphere. Given the potentially significant effect on anthropogenic forcing, effort should be made to better understand such naturally driven aerosol processes.
Assuntos
Aerossóis/análise , Atmosfera/análise , Modelos Estatísticos , Aerossóis/química , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/química , Atmosfera/química , Clima , Simulação por Computador , História do Século XVIII , História do Século XIX , História do Século XX , História do Século XXI , Humanos , Desenvolvimento Industrial/história , IncertezaRESUMO
We explore the pressure dependence of a stabilized Criegee Intermediate (sCI) formation from a sequence of trans-alkene ozonolysis reactions. To study the effect of carbon chain length on the stabilization, we select five symmetric trans-alkenes ranging from trans-2-butene (C4) through trans-7-tetradecene (C14). We measure the pressure falloff curves for each alkene from 50 to 900 Torr in a flow reactor using conversion of SO2 to H2SO4 with and without an OH scavenger, and subsequent detection of H2SO4 with a nitrate chemical ionization mass spectrometer to constrain sCI yields. As the length of the carbon chain increases, we observe a systematic increase in Criegee Intermediate stabilization at a given pressure, along with a systematic decrease in the low-pressure limit. Our results also suggest that for these symmetrical systems the anticonformer of the Criegee Intermediate stabilizes before (at lower pressure than) the syn conformer.
RESUMO
For atmospheric sulfuric acid (SA) concentrations the presence of dimethylamine (DMA) at mixing ratios of several parts per trillion by volume can explain observed boundary layer new particle formation rates. However, the concentration and molecular composition of the neutral (uncharged) clusters have not been reported so far due to the lack of suitable instrumentation. Here we report on experiments from the Cosmics Leaving Outdoor Droplets chamber at the European Organization for Nuclear Research revealing the formation of neutral particles containing up to 14 SA and 16 DMA molecules, corresponding to a mobility diameter of about 2 nm, under atmospherically relevant conditions. These measurements bridge the gap between the molecular and particle perspectives of nucleation, revealing the fundamental processes involved in particle formation and growth. The neutral clusters are found to form at or close to the kinetic limit where particle formation is limited only by the collision rate of SA molecules. Even though the neutral particles are stable against evaporation from the SA dimer onward, the formation rates of particles at 1.7-nm size, which contain about 10 SA molecules, are up to 4 orders of magnitude smaller compared with those of the dimer due to coagulation and wall loss of particles before they reach 1.7 nm in diameter. This demonstrates that neither the atmospheric particle formation rate nor its dependence on SA can simply be interpreted in terms of cluster evaporation or the molecular composition of a critical nucleus.
RESUMO
We explored the pressure dependence of acetone oxide (stabilized Criegee Intermediate, sCI) formation from 2,3-dimethyl-2-butene ozonolysis between 50 and 900 Torr using a new, highly accurate technique. We exploited the ability of the sCI to oxidize SO2 to H2SO4, which we measured with a chemical ionization mass spectrometer. We produced the Criegee intermediates (CI) in a high-pressure flow reactor via ozonolysis of 2,3-dimethyl-2-butene (tetramethyl ethylene, TME) and measured the relative H2SO4 concentrations with and without an added OH scavenger. Because the TME reaction with ozone forms acetone oxide (a syn-CI) with unit efficiency, we directly calculated the sCI yields at different pressures from the precisely measured ratio of the uncalibrated H2SO4 signal with and without the scavenger. We observed a linear pressure dependence between 50 and 900 Torr with a minimum stabilization of 12.7 ± 0.6% at 50 Torr and a maximum stabilization of 42 ± 2% at 900 Torr. A linear fit to the measured data points shows a zero-pressure intercept of 15 ± 2%, constraining the fraction of CI formed below the barrier for acetone oxide isomerization.
RESUMO
Many devastating pathogens are passively dispersed, and their epidemics are characterized by variation that is typically attributed to environmental factors. Here, by combining laboratory inoculations with wind tunnel and field trials using the wind-dispersed pathogen Podosphaera plantaginis, we demonstrated striking genetic variation affecting the unexplored microscale (< 2 m) of epidemics. Recipient and source host genotypes, as well as pathogen strain, explained a large fraction of variation in the three key dispersal phases: departure, movement, and settlement. Moreover, we found genotypic variation affecting group size of the pathogen dispersal unit, ultimately resulting in increased disease development on hosts close to the infection source. Together, our results show that genotypic variation may generate considerable variation in the rate of disease spread through space and time with disease hotspots emerging around initial foci. Furthermore, the extent of genetic variation affecting the entire dispersal process confirms that these traits may be targeted by selection.
Assuntos
Ascomicetos/genética , Ascomicetos/fisiologia , Genótipo , Doenças das Plantas/microbiologia , Plantago/microbiologia , Animais , VentoRESUMO
We investigated the nucleation of sulfuric acid together with two bases (ammonia and dimethylamine), at the CLOUD chamber at CERN. The chemical composition of positive, negative, and neutral clusters was studied using three Atmospheric Pressure interface-Time Of Flight (APi-TOF) mass spectrometers: two were operated in positive and negative mode to detect the chamber ions, while the third was equipped with a nitrate ion chemical ionization source allowing detection of neutral clusters. Taking into account the possible fragmentation that can happen during the charging of the ions or within the first stage of the mass spectrometer, the cluster formation proceeded via essentially one-to-one acid-base addition for all of the clusters, independent of the type of the base. For the positive clusters, the charge is carried by one excess protonated base, while for the negative clusters it is carried by a deprotonated acid; the same is true for the neutral clusters after these have been ionized. During the experiments involving sulfuric acid and dimethylamine, it was possible to study the appearance time for all the clusters (positive, negative, and neutral). It appeared that, after the formation of the clusters containing three molecules of sulfuric acid, the clusters grow at a similar speed, independent of their charge. The growth rate is then probably limited by the arrival rate of sulfuric acid or cluster-cluster collision.
Assuntos
Amônia/química , Dimetilaminas/química , Espectrometria de Massas/métodos , Ácidos Sulfúricos/química , Aerossóis/química , Álcalis/química , Pressão Atmosférica , Íons/química , Espectrometria de Massas/instrumentaçãoRESUMO
OBJECTIVES: Sound pressure and exhaled flow have been identified as important factors associated with higher particle emissions. The aim of this study was to assess how different vocalizations affect the particle generation independently from other factors. DESIGN: Experimental study. METHODS: Thirty-three experienced singers repeated two different sentences in normal loudness and whispering. The first sentence consisted mainly of consonants like /k/ and /t/ as well as open vowels, while the second sentence also included the /s/ sound and contained primarily closed vowels. The particle emission was measured using condensation particle counter (CPC, 3775 TSI Inc.) and aerodynamic particle sizer (APS, 3321 TSI Inc.). The CPC measured particle number concentration for particles larger than 4 nm and mainly reflects the number of particles smaller than 0.5 µm since these particles dominate total number concentration. The APS measured particle size distribution and number concentration in the size range of 0.5-10 µm and data were divided into >1 µm and <1 µm particle size ranges. Generalized linear mixed-effects models were constructed to assess the factors affecting particle generation. RESULTS: Whispering produced more particles than speaking and sentence 1 produced more particles than sentence 2 while speaking. Sound pressure level had effect on particle production independently from vocalization. The effect of exhaled airflow was not statistically significant. CONCLUSIONS: Based on our results the type of vocalization has a significant effect on particle production independently from other factors such as sound pressure level.
RESUMO
Dental healthcare personnel (DHCP) are subjected to microbe-containing aerosols and splatters in their everyday work. Safer work conditions must be developed to ensure the functioning of the healthcare system. By simulating dental procedures, we aimed to compare the virus-containing aerosol generation of four common dental instruments, and high-volume evacuation (HVE) in their mitigation. Moreover, we combined the detection of infectious viruses with RT-qPCR to form a fuller view of virus-containing aerosol spread in dental procedures. The air-water syringe produced the highest number of aerosols. HVE greatly reduced aerosol concentrations during procedures. The air-water syringe spread infectious virus-containing aerosols throughout the room, while other instruments only did so to close proximity. Additionally, infectious viruses were detected on the face shields of DHCP. Virus genomes were detected throughout the room with all instruments, indicating that more resilient viruses might remain infectious and pose a health hazard. HVE reduced the spread of both infectious viruses and viral genomes, however, it did not fully prevent them. We recommend meticulous use of HVE, a well-fitting mask and face shields in dental procedures. We advise particular caution when operating with the air-water syringe. Due to limited repetitions, this study should be considered a proof-of-concept report.
Assuntos
Viroses , Humanos , Aerossóis , Pessoal de Saúde , Odontologia , ÁguaRESUMO
The observation of a weak proton-emission branch in the decay of the 3174-keV 53mCo isomeric state marked the discovery of proton radioactivity in atomic nuclei in 1970. Here we show, based on the partial half-lives and the decay energies of the possible proton-emission branches, that the exceptionally high angular momentum barriers, [Formula: see text] and [Formula: see text], play a key role in hindering the proton radioactivity from 53mCo, making them very challenging to observe and calculate. Indeed, experiments had to wait decades for significant advances in accelerator facilities and multi-faceted state-of-the-art decay stations to gain full access to all observables. Combining data taken with the TASISpec decay station at the Accelerator Laboratory of the University of Jyväskylä, Finland, and the ACTAR TPC device on LISE3 at GANIL, France, we measured their branching ratios as bp1 = 1.3(1)% and bp2 = 0.025(4)%. These results were compared to cutting-edge shell-model and barrier penetration calculations. This description reproduces the order of magnitude of the branching ratios and partial half-lives, despite their very small spectroscopic factors.
RESUMO
Illegal explosives are a threat to aviation, transport sector, critical infrastructure and generally to public safety. Their detection requires extremely sensitive instruments with efficient workflows that allow large throughput of items. In this study, we built a trace explosives detection instrument that requires minimal sample treatment and reaches ultra-low picogram level detection limits for many common explosives. The instrument is based on thermal desorption of filters, which allows analysis of liquid and solid phase samples, and subsequent selective atmospheric pressure chemical ionization and detection with a mass spectrometer. We performed experiments to scope the optimal ionization chemistry for the system and selected Br- as the reagent ion, and measured the limit of detection for 14 different explosives that were generally in the picogram range. Finally, we demonstrate the usability of the system by sampling air to a filter from a storage room known to contain explosives, from which we detect four different explosives.
Assuntos
Substâncias Explosivas , Pressão Atmosférica , Fenômenos Químicos , Substâncias Explosivas/análise , Indicadores e Reagentes , Espectrometria de Massas/métodosRESUMO
A major fraction of atmospheric aerosol particles, which affect both air quality and climate, form from gaseous precursors in the atmosphere. Highly oxygenated organic molecules (HOMs), formed by oxidation of biogenic volatile organic compounds, are known to participate in particle formation and growth. However, it is not well understood how they interact with atmospheric pollutants, such as nitrogen oxides (NO x ) and sulfur oxides (SO x ) from fossil fuel combustion, as well as ammonia (NH3) from livestock and fertilizers. Here, we show how NO x suppresses particle formation, while HOMs, sulfuric acid, and NH3 have a synergistic enhancing effect on particle formation. We postulate a novel mechanism, involving HOMs, sulfuric acid, and ammonia, which is able to closely reproduce observations of particle formation and growth in daytime boreal forest and similar environments. The findings elucidate the complex interactions between biogenic and anthropogenic vapors in the atmospheric aerosol system.
RESUMO
The growth of freshly formed aerosol particles can be the bottleneck in their survival to cloud condensation nuclei. It is therefore crucial to understand how particles grow in the atmosphere. Insufficient experimental data has impeded a profound understanding of nano-particle growth under atmospheric conditions. Here we study nano-particle growth in the CLOUD (Cosmics Leaving OUtdoors Droplets) chamber, starting from the formation of molecular clusters. We present measured growth rates at sub-3 nm sizes with different atmospherically relevant concentrations of sulphuric acid, water, ammonia and dimethylamine. We find that atmospheric ions and small acid-base clusters, which are not generally accounted for in the measurement of sulphuric acid vapour, can participate in the growth process, leading to enhanced growth rates. The availability of compounds capable of stabilizing sulphuric acid clusters governs the magnitude of these effects and thus the exact growth mechanism. We bring these observations into a coherent framework and discuss their significance in the atmosphere.
RESUMO
Fundamental questions remain about the origin of newly formed atmospheric aerosol particles because data from laboratory measurements have been insufficient to build global models. In contrast, gas-phase chemistry models have been based on laboratory kinetics measurements for decades. We built a global model of aerosol formation by using extensive laboratory measurements of rates of nucleation involving sulfuric acid, ammonia, ions, and organic compounds conducted in the CERN CLOUD (Cosmics Leaving Outdoor Droplets) chamber. The simulations and a comparison with atmospheric observations show that nearly all nucleation throughout the present-day atmosphere involves ammonia or biogenic organic compounds, in addition to sulfuric acid. A considerable fraction of nucleation involves ions, but the relatively weak dependence on ion concentrations indicates that for the processes studied, variations in cosmic ray intensity do not appreciably affect climate through nucleation in the present-day atmosphere.
RESUMO
Atmospheric nucleation is the dominant source of aerosol particles in the global atmosphere and an important player in aerosol climatic effects. The key steps of this process occur in the sub-2-nanometer (nm) size range, in which direct size-segregated observations have not been possible until very recently. Here, we present detailed observations of atmospheric nanoparticles and clusters down to 1-nm mobility diameter. We identified three separate size regimes below 2-nm diameter that build up a physically, chemically, and dynamically consistent framework on atmospheric nucleation--more specifically, aerosol formation via neutral pathways. Our findings emphasize the important role of organic compounds in atmospheric aerosol formation, subsequent aerosol growth, radiative forcing and associated feedbacks between biogenic emissions, clouds, and climate.
RESUMO
Jacobson argues that our statement that "many climate models may overestimate warming by BC" has not been demonstrated. Jacobson challenges our results on the basis that we have misinterpreted some model results, omitted optical focusing under high relative humidity conditions and by involatile components, and because our measurements consist of only two locations over short atmospheric time periods. We address each of these arguments, acknowledging important issues and clarifying some misconceptions, and stand by our observations. We acknowledge that Jacobson identified one detail in our experimental technique that places an additional constraint on the interpretation of our observations and reduces somewhat the potential consequences of the stated implications.
Assuntos
Atmosfera/química , Carbono/química , Aquecimento Global , Luz , Processos Fotoquímicos , Fuligem/químicaRESUMO
Atmospheric black carbon (BC) warms Earth's climate, and its reduction has been targeted for near-term climate change mitigation. Models that include forcing by BC assume internal mixing with non-BC aerosol components that enhance BC absorption, often by a factor of ~2; such model estimates have yet to be clearly validated through atmospheric observations. Here, direct in situ measurements of BC absorption enhancements (E(abs)) and mixing state are reported for two California regions. The observed E(abs) is small-6% on average at 532 nm-and increases weakly with photochemical aging. The E(abs) is less than predicted from observationally constrained theoretical calculations, suggesting that many climate models may overestimate warming by BC. These ambient observations stand in contrast to laboratory measurements that show substantial E(abs) for BC are possible.