Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 36(33)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38722360

RESUMO

This work comprehensively investigates the non-Hermitian skin effect (NHSE) in a spinless Bernevig-Hughes-Zhang -like model in one dimension. It is generally believed that a system with non-reciprocal hopping amplitudes demonstrates NHSE. However, we show that there are exceptions, and more in-depth analyses are required to decode the presence of NHSE or its variants in a system. The fascinating aspects of our findings, depending on the inclusion of non-reciprocity in the inter-orbital hopping terms, concede the existence of conventional NHSE or NHSE at both edges and even a surprising absence of NHSE. The topological properties and the (bi-orthogonal) bulk-boundary correspondence, enumerated via computation of the (complex) Berry phase and spatial localization of the edge modes, highlight the topological phase transitions occurring therein. Further, to facilitate a structured discussion of the non-Hermitian model, we split the results intoPTsymmetric and non-PTsymmetric cases with a view to comparing the two.

2.
J Phys Condens Matter ; 35(10)2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36542860

RESUMO

The present work addresses the distinction between the topological properties ofPTsymmetric and non-PTsymmetric scenarios for the non-Hermitian Su-Schrieffer-Heeger model. The non-PTsymmetric case is represented by non-reciprocity in both the inter- and the intra-cell hopping amplitudes, while the one withPTsymmetry is modeled by a complex on-site staggered potential. In particular, we study the loci of the exceptional points, the winding numbers, band structures, and explore the breakdown of bulk-boundary correspondence (BBC). We further study the interplay of the dimerization strengths on the observables for these cases. The non-PTsymmetric case denotes a more familiar situation, where the winding number abruptly changes by half-integer through tuning of the non-reciprocity parameters, and demonstrates a complete breakdown of BBC, thereby showing non-Hermitian skin effect. The topological nature of thePTsymmetric case appears to follow closely to its Hermitian analogue, except that it shows unbroken (broken) regions with complex (purely real) energy spectra, while another variant of the winding number exhibits a continuous behavior as a function of the strength of the potential, while the conventional BBC is preserved.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA