Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Eur J Appl Physiol ; 122(5): 1231-1237, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35235031

RESUMO

PURPOSE: We have previously observed substantially higher oxygen uptake in soldiers walking on terrain at night than when performing the same walk in bright daylight. The aims of the present study were to investigate the influence of vision on mechanical efficiency during slow, horizontal, constant-speed walking, and to determine whether any vision influence is modified by load carriage. METHODS: Each subject (n = 15) walked (3.3 km/h) for 10 min on a treadmill in four different conditions: (1) full vision, no carried load, (2) no vision, no carried load, (3) full vision with a 25.5-kg rucksack, (4) no vision with a 25.5-kg rucksack. RESULTS: Oxygen uptake was 0.94 ± 0.12 l/min in condition (1), 1.15 ± 0.20 l/min in (2), 1.15 ± 0.12 l/min in (3) and 1.35 ± 0.19 l/min in (4). Thus, lack of vision increased oxygen uptake by about 19%. Analyses of movement pattern, by use of optical markers attached to the limbs and torso, revealed considerably shorter step length (12 and 10%) in the no vision (2 and 4) than full vision conditions (1 and 3). No vision conditions (2 and 4) increased step width by 6 and 6%, and increased vertical foot clearance by 20 and 16% compared to full vision conditions (1 and 3). CONCLUSION: The results suggest that vision has a marked influence on mechanical efficiency even during entrained, repetitive movements performed on an obstacle-free horizontal surface under highly predictable conditions.


Assuntos
Metabolismo Energético , Caminhada , Fenômenos Biomecânicos , Teste de Esforço , Marcha , Humanos , Oxigênio
2.
EMBO J ; 26(23): 4831-40, 2007 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-17972916

RESUMO

Nuclear receptors control the function of cells by regulating transcription from specific gene networks. The establishment and maintenance of epigenetic gene marks is fundamental to the regulation of gene transcription and the control of cell function. RIP140 is a corepressor for nuclear receptors that suppresses transcription from a broad programme of metabolic genes and thereby controls energy homoeostasis in vivo. Here we show by analysis of Ucp1, a gene which is typically expressed in brown but not white adipocytes, that RIP140 is essential for both DNA and histone methylation to maintain gene repression. RIP140 expression promotes the assembly of DNA and histone methyltransferases (HMTs) on the Ucp1 enhancer and leads to methylation of specific CpG residues and histones as judged by bisulphite genomic sequencing and chromatin immunoprecipitation assays. Our results suggest that RIP140 serves as a scaffold for both DNA and HMT activities to inhibit gene transcription by two key epigenetic repression systems.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Adipócitos Brancos/metabolismo , Núcleo Celular/metabolismo , Metilação de DNA , Epigênese Genética , Regulação da Expressão Gênica , Histonas/metabolismo , Canais Iônicos/biossíntese , Proteínas Mitocondriais/biossíntese , Proteínas Nucleares/genética , Proteínas Nucleares/fisiologia , Animais , Diferenciação Celular , Imunoprecipitação da Cromatina , Ilhas de CpG , DNA/metabolismo , Fibroblastos/metabolismo , Camundongos , Proteína 1 de Interação com Receptor Nuclear , Proteína Desacopladora 1
3.
Mol Endocrinol ; 21(11): 2687-97, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17684114

RESUMO

The liver X receptors (LXRs) are nuclear receptors that play important roles in the regulation of lipid metabolism. In this study, we demonstrate that receptor-interacting protein 140 (RIP140) is a cofactor for LXR in liver. Analysis of RIP140 null mice and hepatocytes depleted of RIP140 indicate that the cofactor is essential for the ability of LXR to activate the expression of a set of genes required for lipogenesis. Furthermore we demonstrate that RIP140 is required for the ability of LXR to repress the expression of the phosphoenolpyruvate carboxykinase gene in Fao cells and mice. Thus, we conclude that the function of RIP140 as a cofactor for LXR in liver varies according to the target genes and metabolic process, serving as a coactivator in lipogenesis but as a corepressor in gluconeogenesis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Glucose/metabolismo , Metabolismo dos Lipídeos , Fígado/metabolismo , Proteínas Nucleares/fisiologia , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Gluconeogênese , Hepatócitos/metabolismo , Humanos , Receptores X do Fígado , Camundongos , Camundongos Knockout , Proteínas Nucleares/metabolismo , Proteína 1 de Interação com Receptor Nuclear , Receptores Nucleares Órfãos , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , Plasmídeos/metabolismo , Regiões Promotoras Genéticas
4.
Mol Cell Biol ; 28(22): 6785-95, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18794372

RESUMO

Nuclear receptors activate or repress target genes depending on the recruitment of coactivators or corepressors. The corepressor RIP140 and the PPAR coactivator 1alpha (PGC-1alpha) both play key roles in the regulated transcription of genes involved in energy homeostasis. We investigated the roles of RIP140 and PGC-1alpha in controlling the expression of CIDEA, an important regulatory factor in adipose cell function and obesity. Ectopically expressed CIDEA surrounded lipid droplets in brown adipocytes and induced the formation of lipid droplets in nonadipogenic cell lines. The expression and promoter activity of CIDEA was repressed by RIP140 and induced by PGC-1alpha, mediated through the binding of estrogen-related receptor alpha and NRF-1 to their cognate binding sites. Importantly, we demonstrate that RIP140 interacts directly with PGC-1alpha and suppresses its activity. The direct antagonism of PGC-1alpha by RIP140 provides a mechanism for regulating target gene transcription via nuclear receptor-dependent and -independent pathways.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Regulação da Expressão Gênica , Proteínas Nucleares/metabolismo , Transativadores/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Adipócitos Marrons/citologia , Adipócitos Marrons/metabolismo , Animais , Proteínas Reguladoras de Apoptose/genética , Sequência de Bases , Linhagem Celular , Humanos , Lipídeos/química , Camundongos , Camundongos Knockout , Proteínas Nucleares/genética , Proteína 1 de Interação com Receptor Nuclear , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Regiões Promotoras Genéticas , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transativadores/genética , Fatores de Transcrição
5.
Mol Genet Genomics ; 276(2): 197-210, 2006 08.
Artigo em Inglês | MEDLINE | ID: mdl-16758199

RESUMO

Med21 (Srb7) is a small essential subunit of the middle domain of the Mediator, which is conserved in all eukaryotes. It is thought to play an important role in both transcriptional activation and repression. In the yeast Saccharomyces cerevisiae, Med21 is known to interact both with the Mediator subunit Med6 and the global co-repressor Tup1. We have made a temperature-sensitive med21-ts mutant, which we used in a high copy number suppressor screen. We found ten yeast genes that can suppress the med21-ts mutation in high copy number. The three strongest suppressors were MED7 and MED10 (NUT2), which encode other Mediator subunits, and ASH1, which encodes a repressor of the HO gene. 2-Hybrid experiments confirmed multiple interactions between Med21, Med10, Med7 and Med4, and also revealed a Med21 self-interaction. The interactions of Med21 with Med7 and Med10 were verified by co-immunoprecipitation of tagged proteins produced in insect cells and E. coli, where both interactions were found to depend strongly on the amino acid residues 2-8 of Med21. These interactions, and the interactions of Med21 with Med6 and Tup1, suggest that Med21 may serve as a molecular switchboard that integrates different signals before they reach the core polymerase.


Assuntos
Regulação Fúngica da Expressão Gênica/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Ativação Transcricional/genética , Sequência de Aminoácidos , Complexo Mediador , Dados de Sequência Molecular , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ligação Proteica/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Técnicas do Sistema de Duplo-Híbrido
6.
J Biol Chem ; 278(6): 3831-9, 2003 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-12468546

RESUMO

It is possible to recruit RNA polymerase II to a target promoter and, thus, activate transcription by fusing Mediator subunits to a DNA binding domain. To investigate functional interactions within Mediator, we have tested such fusions of the lexA DNA binding domain to Med1, Med2, Gal11, Srb7, and Srb10 in wild type, med1, med2, gal11, sin4, srb8, srb10, and srb11 strains. We found that lexA-Med2 and lexA-Gal11 are strong activators that are independent of all Mediator subunits tested. lexA-Srb10 is a weak activator that depends on Srb8 and Srb11. lexA-Med1 and lexA-Srb7 are both cryptic activators that become active in the absence of Srb8, Srb10, Srb11, or Sin4. An unexpected finding was that lexA-VP16 differs from Gal4-VP16 in that it is independent of the activator binding Mediator module. Both lexA-Med1 and lexA-Srb7 are stably associated with Med4 and Med8, which suggests that they are incorporated into Mediator. Med4 and Med8 exist in two mobility forms that differ in their association with lexA-Med1 and lexA-Srb7. Within purified Mediator, Med4 is present as a phosphorylated lower mobility form. Taken together, these results suggest that assembly of Mediator is a multistep process that involves conversion of both Med4 and Med8 to their low mobility forms.


Assuntos
Proteínas Fúngicas/metabolismo , Saccharomyces cerevisiae/metabolismo , Sequência de Bases , Western Blotting , Primers do DNA , Proteínas Fúngicas/genética , Testes de Precipitina , Regiões Promotoras Genéticas , Ligação Proteica
7.
Proc Natl Acad Sci U S A ; 101(10): 3370-5, 2004 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-14988503

RESUMO

The yeast Mediator complex is required for transcriptional regulation both in vivo and in vitro, and its function is conserved in all eukaryotes. Mediator interacts with both transcriptional activators and RNA polymerase II, but little is known about the mechanisms by which it operates at the molecular level. Here, we show that the cyclin-dependent kinase Srb10 interacts with, and phosphorylates, the Med2 subunit of Mediator both in vivo and in vitro. A point mutation of the single phosphorylation site in Med2 results in a strongly reduced expression of the REP1, REP2, FLP1, and RAF1 genes, which are all located on the endogenous 2-microm plasmid. Combined with previous studies on the effects of SRB10/SRB11 deletions, our data suggest that posttranslational modifications of Mediator subunits are important for regulation of gene expression.


Assuntos
Quinases Ciclina-Dependentes/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Quinase 8 Dependente de Ciclina , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Complexo Mediador , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Fosforilação , Plasmídeos/genética , Subunidades Proteicas , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA