RESUMO
Clostridium botulinum produces botulinum neurotoxin (BoNT), which is the causative agent of botulism, a rare but serious disease that can result in death if not treated. Infant botulism occurs when C. botulinum colonizes the intestinal tract of infants and produces BoNT. It has been proposed that infants under the age of 1 year are uniquely susceptible to colonization by C. botulinum as their intestinal microbiota is not fully developed and provides little competition, allowing C. botulinum to thrive and produce BoNT in the gut. There are seven well-characterized serotypes (A-G) of BoNT identified by the ability of specific antitoxins to neutralize BoNTs. Molecular technology has allowed researchers to narrow these further into subtypes based on nucleic acid sequences of the botulinum toxin (bont) gene. One of the most recently recognized subtypes for bont/B is subtype bont/B7. We identified through whole genome sequencing five C. botulinum isolates harboring bont/B7 from CDC's strain collection, including patient isolates and an epidemiologically linked isolate from an opened infant formula container. In this study, we report the results of whole genome sequencing analysis of these C. botulinum subtype bont/B7 isolates. Average nucleotide identity and high quality single nucleotide polymorphism (hqSNP) analysis resulted in two major clades. The epidemiologically linked isolates differed from each other by 2-6 hqSNPs, and this clade separated from the other isolates by 95-119 hqSNPs, corroborating available epidemiological evidence.
Assuntos
Toxinas Botulínicas/genética , Botulismo/microbiologia , Clostridium botulinum/genética , Microbiologia de Alimentos , Fezes/microbiologia , Genótipo , Humanos , Alimentos Infantis/microbiologia , Recém-Nascido , Filogenia , Estados UnidosRESUMO
Clostridium botulinum strains are prevalent in the environment and produce a potent neurotoxin that causes botulism, a rare but serious paralytic disease. In 2010, a national PulseNet database was established to curate C. botulinum pulsotypes and facilitate epidemiological investigations, particularly for serotypes A and B strains frequently associated with botulism cases in the United States. Between 2010 and 2014 we performed pulsed-field gel electrophoresis (PFGE) using a PulseNet protocol, uploaded the resulting PFGE patterns into a national database, and analyzed data according to PulseNet criteria (UPGMA clustering, Dice coefficient, 1.5% position tolerance, and 1.5% optimization). A retrospective data analysis was undertaken on 349 entries comprised of type A and B strains isolated from foodborne and infant cases to determine epidemiological relevance, resolution of the method, and the diversity of the database. Most studies to date on the pulsotype diversity of C. botulinum have encompassed very small sets of isolates; this study, with over 300 isolates, is more comprehensive than any published to date. Epidemiologically linked isolates had indistinguishable patterns, except in four instances and there were no obvious geographic trends noted. Simpson's Index of Diversity (D) has historically been used to demonstrate species diversity and abundance within a group, and is considered a standard descriptor for PFGE databases. Simpson's Index was calculated for each restriction endonuclease (SmaI, XhoI), the pattern combination SmaI-XhoI, as well as for each toxin serotype. The D values indicate that both enzymes provided better resolution for serotype B isolates than serotype A. XhoI as the secondary enzyme provided little additional discrimination for C. botulinum. SmaI patterns can be used to exclude unrelated isolates during a foodborne outbreak, but pulsotypes should always be considered concurrently with available epidemiological data.
Assuntos
Botulismo/microbiologia , Clostridium botulinum/classificação , Clostridium botulinum/genética , Eletroforese em Gel de Campo Pulsado/métodos , Doenças Transmitidas por Alimentos/microbiologia , Técnicas de Tipagem Bacteriana , Biodiversidade , Botulismo/epidemiologia , Clostridium botulinum/imunologia , Monitoramento Epidemiológico , Doenças Transmitidas por Alimentos/epidemiologia , Humanos , Lactente , Estudos Retrospectivos , Sorogrupo , Estados Unidos/epidemiologiaRESUMO
We used whole-genome sequencing to determine evolutionary relationships among 20 outbreak-associated clinical isolates of Listeria monocytogenes serotypes 1/2a and 1/2b. Isolates from 6 of 11 outbreaks fell outside the clonal groups or "epidemic clones" that have been previously associated with outbreaks, suggesting that epidemic potential may be widespread in L. monocytogenes and is not limited to the recognized epidemic clones. Pairwise comparisons between epidemiologically related isolates within clonal complexes showed that genome-level variation differed by 2 orders of magnitude between different comparisons, and the distribution of point mutations (core versus accessory genome) also varied. In addition, genetic divergence between one closely related pair of isolates from a single outbreak was driven primarily by changes in phage regions. The evolutionary analysis showed that the changes could be attributed to horizontal gene transfer; members of the diverse bacterial community found in the production facility could have served as the source of novel genetic material at some point in the production chain. The results raise the question of how to best utilize information contained within the accessory genome in outbreak investigations. The full magnitude and complexity of genetic changes revealed by genome sequencing could not be discerned from traditional subtyping methods, and the results demonstrate the challenges of interpreting genetic variation among isolates recovered from a single outbreak. Epidemiological information remains critical for proper interpretation of nucleotide and structural diversity among isolates recovered during outbreaks and will remain so until we understand more about how various population histories influence genetic variation.
Assuntos
Surtos de Doenças , Evolução Molecular , Variação Genética , Listeria monocytogenes/genética , Listeriose/epidemiologia , Listeriose/microbiologia , Transferência Genética Horizontal , Genoma Bacteriano , Humanos , Listeria monocytogenes/isolamento & purificação , Filogenia , Mutação Puntual , Análise de Sequência de DNA , Sorogrupo , Sorotipagem , Estados Unidos/epidemiologiaRESUMO
Vibrio parahaemolyticus (Vp) is found naturally in coastal saltwater. In the United States, Vp causes an estimated 35,000 domestically acquired foodborne infections annually, of which most are attributable to consumption of raw or undercooked shellfish. Illness typically consists of mild to moderate gastroenteritis, although severe infection can occur. Demographic, clinical, and exposure information (including traceback information on implicated seafood) for all laboratory-confirmed illnesses are reported by state health departments to CDC through the Cholera and Other Vibrio Surveillance system. Vp isolates are distinguished by serotyping (>90 serotypes have been described) and by pulsed-field gel electrophoresis (PFGE).
Assuntos
Surtos de Doenças , Doenças Transmitidas por Alimentos/epidemiologia , Intoxicação por Frutos do Mar , Vibrioses/epidemiologia , Vibrio parahaemolyticus/isolamento & purificação , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Doenças Transmitidas por Alimentos/microbiologia , Humanos , Masculino , Pessoa de Meia-Idade , Estações do Ano , Sorotipagem , Estados Unidos/epidemiologia , Vibrioses/microbiologia , Vibrio parahaemolyticus/classificação , Adulto JovemRESUMO
Botulinum neurotoxin-producing species of Clostridium are highly diverse. Clostridium botulinum could represent at least four different species of Clostridium. In addition, strains that do not produce botulinum neurotoxin are closely related to toxigenic strains, probably representing the same species. Although reclassification of these organisms has been proposed in the past, their species names have remained unchanged, mainly because of the premise that changing names of medically relevant organisms might cause confusion in the healthcare and scientific community. In this review, we discuss the possible unintended consequences of reclassifying botulinum neurotoxin-producing species of Clostridium, which are of public health, medical, and biodefense interest.
Assuntos
Toxinas Botulínicas , Clostridium botulinum , ClostridiumRESUMO
Here, we present 20 draft genome sequences of Clostridium botulinum type A isolates originating from foodborne outbreaks in the United States and Ethiopia. Publicly available genomes enhance our understanding of C. botulinum genomics and are an asset in bioterrorism preparedness.
RESUMO
Here, we report the draft genome sequence of Clostridium botulinum strain CDC76130, which harbors a rare botulinum toxin gene (bont) complex arrangement of bont/A5 and truncated bont/B2 within the same ha toxin gene cluster.
RESUMO
OBJECTIVE: Saliva specimens collected in school populations may offer a more feasible, noninvasive alternative to nasal swabs for large-scale COVID-19 testing efforts in kindergarten through 12th grade (K-12) schools. We investigated acceptance of saliva-based COVID-19 testing among quarantined K-12 students and their parents, teachers, and staff members who recently experienced a SARS-CoV-2 exposure in school. METHODS: We surveyed 719 participants, in person or by telephone, who agreed to or declined a free saliva-based COVID-19 reverse-transcription polymerase chain reaction test as part of a surveillance investigation about whether they would have consented to testing if offered a nasal swab instead. We conducted this investigation in 6 school districts in Greene County (n = 3) and St. Louis County (n = 3), Missouri, from January 25 through March 23, 2021. RESULTS: More than one-third (160 of 446) of K-12 students (or their parents or guardians), teachers, and staff members who agreed to a saliva-based COVID-19 test indicated they would have declined testing if specimen collection were by nasal swab. When stratified by school level, 51% (67 of 132) of elementary school students or their parents or guardians would not have agreed to testing if a nasal swab was offered. CONCLUSIONS: Some students, especially those in elementary school, preferred saliva-based COVID-19 testing to nasal swab testing. Use of saliva-based testing might increase voluntary participation in screening efforts in K-12 schools to help prevent the spread of SARS-CoV-2.
Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , COVID-19/epidemiologia , Teste para COVID-19 , Humanos , Saliva , Manejo de Espécimes , EstudantesRESUMO
Three cases of infant botulism were reported in a small Colorado town between 1981 and 1984. The first two cases occurred in 1981, 6 months apart, and the third case occurred in 1984. Clostridium botulinum type A was isolated from stool of all three case patients and from environmental samples of the patient's homes. An epidemiological investigation and follow-up study were conducted from 1981 to 1986 and concluded the cases were likely related. In this study, we sought to determine whether the C. botulinum type A clinical isolates were related to each other and to isolates obtained from environmental samples. We performed whole genome sequencing (WGS) for 17 isolates associated with this potential cluster of infant botulism. Fifteen isolates were confirmed to be C. botulinum type A(B) and contained botulinum toxin gene subtypes A1 and B5 by WGS; these strains formed a monophyletic cluster in a phylogeny and were considered closely related to each other (0-18 high-quality single-nucleotide polymorphisms), but distinct from other C. botulinum type A(B) in Colorado and elsewhere in the United States. Results of our study suggest that the three infant botulism cases could have represented a cluster due to a C. botulinum type A(B) strain present in the environment.
RESUMO
Clostridium botulinum produces botulinum neurotoxin (BoNT), which can lead to death if untreated. In the United States, over 90% of wound botulism cases are associated with injection drug use of black tar heroin. We sought to determine the phylogenetic relatedness of C. botulinum isolated from an injection drug use wound botulism case and isolates from endogenous infant botulism cases in Hawaii. Nineteen C. botulinum type B isolates from Hawaii and one type B isolate from California were analyzed by whole-genome sequencing. The botulinum toxin gene (bont) subtype was determined using CLC Genomics Workbench, and the seven-gene multi-locus sequence type (MLST) was identified by querying PubMLST. Mashtree and pairwise average nucleotide identity were used to find nearest neighbors, and Lyve-SET approximated a phylogeny. Eighteen of the isolates harbored the bont/B5 gene: of those, 17 were classified as sequence type ST36 and one was classified as ST104. A single isolate from Hawaii harbored bont/B1 and was determined to belong to ST110, and the isolate from California harbored bont/B1 and belonged to ST30. A tree constructed with Lyve-SET showed a high degree of homology among all the Hawaiian C. botulinum isolates that harbor the bont/B5 gene. Our results indicate that the bont/B-expressing isolates recovered from Hawaii are closely related to each other, suggesting local contamination of the drug paraphernalia or the wound itself with spores rather than contamination of the drug at manufacture or during transport. These findings may assist in identifying interventions to decrease wound botulism among persons who inject drugs.
RESUMO
The PulseNet Methods Development and Validation Laboratory began a re-evaluation of the standardized pulsed-field gel electrophoresis (PFGE) protocols with the goal of optimizing their overall performance and robustness. Herein, we describe a stepwise evaluation of the PulseNet-standardized PFGE protocol for Listeria monocytogenes that led to the modification of several steps which significantly improved the overall appearance and reproducibility of the resulting PFGE data. These improvements included the following: (1) reducing the cell suspension concentration, (2) increasing lysozyme incubation temperature from 37 degrees C to 56 degrees C, and (3) decreasing the number of units of restriction enzymes AscI and ApaI. These changes were incorporated into a proposed protocol that was evaluated by 16 PulseNet participating laboratories, including 2 international participants. Results from the validation study indicated that the updated L. monocytogenes protocol is more robust than the original PulseNet-standardized protocol established in 1998 and this resulted in the official adoption of the new protocol into the PulseNet system in the spring of 2008. The modifications not only represent an improvement to the protocol but also describe procedural improvements that could be potentially applied to the PFGE analysis of other Gram-positive organisms.
Assuntos
Eletroforese em Gel de Campo Pulsado/métodos , Eletroforese em Gel de Campo Pulsado/normas , Listeria monocytogenes/classificação , Impressões Digitais de DNA , DNA Bacteriano/análise , Laboratórios , Listeria monocytogenes/genética , Muramidase/metabolismo , Reprodutibilidade dos TestesRESUMO
A large outbreak of extensively drug-resistant (XDR) Salmonella enterica serotype Typhi infections is ongoing in Pakistan, predominantly in Sindh Province. Here, we report the sequencing and characterization of five XDR Salmonella Typhi isolates from the Punjab province of Pakistan that are closely related to the outbreak strain and carry the same IncY plasmid.
RESUMO
Here, we present draft genome sequences for three Clostridium botulinum strains that produce multiple botulinum toxin serotypes. Strains that produce two toxins are rare; however, one of these strains produces subtype B5 and F2 toxins, and two of the strains produce subtype A4 and B5 toxins.
RESUMO
In 2010, a Clostridium botulinum type B isolate was recovered from fermented soybeans during a foodborne botulism investigation. Molecular investigation of the botulinum neurotoxin (bont) gene operon determined that the sequence was a new subtype, denoted B8. Here, we describe the draft whole-genome sequence of the organism.
RESUMO
Clostridium butyricum and Clostridium baratii species have been known to produce botulinum toxin types E and F, respectively, which can cause botulism, a rare but serious neuroparalytic disease. Here, we present finished genome sequences for two of these clinically relevant strains.
RESUMO
Clostridium botulinum secretes a potent neurotoxin that causes devastating effects when ingested, including paralysis and death if not treated. In the United States, some clinically significant strains produce toxin type A while also harboring a silent B gene. These are the first two closed genome sequences published for this subset.
RESUMO
Here, we present a closed genome sequence for Clostridium argentinense strain 89G, the first strain identified to produce botulinum neurotoxin type G (BoNT/G). Although discovered in 1970, to date, there have been no reference quality sequences publicly available for this species.