RESUMO
By converting physical forces into electrical signals or triggering intracellular cascades, stretch-activated ion channels allow the cell to respond to osmotic and mechanical stress. Knowledge of the pathophysiological mechanisms underlying associations of stretch-activated ion channels with human disease is limited. Here, we describe 17 unrelated individuals with severe early-onset developmental and epileptic encephalopathy (DEE), intellectual disability, and severe motor and cortical visual impairment associated with progressive neurodegenerative brain changes carrying ten distinct heterozygous variants of TMEM63B, encoding for a highly conserved stretch-activated ion channel. The variants occurred de novo in 16/17 individuals for whom parental DNA was available and either missense, including the recurrent p.Val44Met in 7/17 individuals, or in-frame, all affecting conserved residues located in transmembrane regions of the protein. In 12 individuals, hematological abnormalities co-occurred, such as macrocytosis and hemolysis, requiring blood transfusions in some. We modeled six variants (p.Val44Met, p.Arg433His, p.Thr481Asn, p.Gly580Ser, p.Arg660Thr, and p.Phe697Leu), each affecting a distinct transmembrane domain of the channel, in transfected Neuro2a cells and demonstrated inward leak cation currents across the mutated channel even in isotonic conditions, while the response to hypo-osmotic challenge was impaired, as were the Ca2+ transients generated under hypo-osmotic stimulation. Ectopic expression of the p.Val44Met and p.Gly580Cys variants in Drosophila resulted in early death. TMEM63B-associated DEE represents a recognizable clinicopathological entity in which altered cation conductivity results in a severe neurological phenotype with progressive brain damage and early-onset epilepsy associated with hematological abnormalities in most individuals.
Assuntos
Encefalopatias , Deficiência Intelectual , Humanos , Encefalopatias/genética , Canais Iônicos/genética , Encéfalo , Deficiência Intelectual/genética , FenótipoRESUMO
Thiopeptides make up a group of structurally complex peptidic natural products holding promise in bioengineering applications. The previously established thiopeptide/mRNA display platform enables de novo discovery of natural product-like thiopeptides with designed bioactivities. However, in contrast to natural thiopeptides, the discovered structures are composed predominantly of proteinogenic amino acids, which results in low metabolic stability in many cases. Here, we redevelop the platform and demonstrate that the utilization of compact reprogrammed genetic codes in mRNA display libraries can lead to the discovery of thiopeptides predominantly composed of nonproteinogenic structural elements. We demonstrate the feasibility of our designs by conducting affinity selections against Traf2- and NCK-interacting kinase (TNIK). The experiment identified a series of thiopeptides with high affinity to the target protein (the best KD = 2.1 nM) and kinase inhibitory activity (the best IC50 = 0.15 µM). The discovered compounds, which bore as many as 15 nonproteinogenic amino acids in an 18-residue macrocycle, demonstrated high metabolic stability in human serum with a half-life of up to 99 h. An X-ray cocrystal structure of TNIK in complex with a discovered thiopeptide revealed how nonproteinogenic building blocks facilitate the target engagement and orchestrate the folding of the thiopeptide into a noncanonical conformation. Altogether, the established platform takes a step toward the discovery of thiopeptides with high metabolic stability for early drug discovery applications.
Assuntos
Aminoácidos , Peptídeos , Humanos , Peptídeos/química , Aminoácidos/química , Código Genético , RNA MensageiroRESUMO
CEP55 encodes centrosomal protein 55 kDa, which plays a crucial role in mitosis, particularly cytokinesis. Biallelic CEP55 variants cause MARCH syndrome (multinucleated neurons, anhydramnios, renal dysplasia, cerebellar hypoplasia and hydranencephaly). Here, we describe a Japanese family with two affected siblings harboring novel compound heterozygous CEP55 variants, NM_001127182: c.[1357 C > T];[1358 G > A] p.[(Arg453Cys)];[(Arg453His)]. Both presented clinically with typical lethal MARCH syndrome. Although a combination of missense and nonsense variants has been reported previously, this is the first report of biallelic missense CEP55 variants. These variants biallelically affected the same amino acid, Arg453, in the last 40 amino acids of CEP55. These residues are functionally important for CEP55 localization to the midbody during cell division, and may be associated with severe clinical outcomes. More cases of pathogenic CEP55 variants are needed to establish the genotype-phenotype correlation.
RESUMO
SLC5A6 encodes the sodium-dependent multivitamin transporter, a transmembrane protein that uptakes biotin, pantothenic acid, and lipoic acid. Biallelic SLC5A6 variants cause sodium-dependent multivitamin transporter deficiency (SMVTD) and childhood-onset biotin-responsive peripheral motor neuropathy (COMNB), which both respond well to replacement therapy with the above three nutrients. SMVTD usually presents with various symptoms in multiple organs, such as gastrointestinal hemorrhage, brain atrophy, and global developmental delay, at birth or in infancy. Without nutrient replacement therapy, SMVTD can be lethal in early childhood. COMNB is clinically milder and has a later onset than SMVTD, at approximately 10 years of age. COMNB symptoms are mostly limited to peripheral motor neuropathy. Here we report three patients from one Japanese family harboring novel compound heterozygous missense variants in SLC5A6, namely NM_021095.4:c.[221C>T];[642G>C] p.[(Ser74Phe)];[(Gln214His)]. Both variants were predicted to be deleterious through multiple lines of evidence, including amino acid conservation, in silico predictions of pathogenicity, and protein structure considerations. Drosophila analysis also showed c.221C>T to be pathogenic. All three patients had congenital brain cysts on neonatal cranial imaging, but no other morphological abnormalities. They also had a mild motor developmental delay that almost completely resolved despite no treatment. In terms of severity, their phenotypes were intermediate between SMVTD and COMNB. From these findings we propose a new SLC5A6-related disorder, spontaneously remitting developmental delay with brain cysts (SRDDBC) whose phenotypic severity is between that of SMVTD and COMNB. Further clinical and genetic evidence is needed to support our suggestion.
Assuntos
Cistos , Simportadores , Pré-Escolar , Humanos , Recém-Nascido , Biotina/genética , Biotina/metabolismo , Fenótipo , Sódio/metabolismo , Simportadores/genética , Simportadores/metabolismoRESUMO
BACKGROUND AND AIMS: Peroxisome proliferator-activated receptor α (PPARα) regulates fatty acid transport and catabolism in liver. However, the role of intestinal PPARα in lipid homeostasis is largely unknown. Here, intestinal PPARα was examined for its modulation of obesity and NASH. APPROACH AND RESULTS: Intestinal PPARα was activated and fatty acid-binding protein 1 (FABP1) up-regulated in humans with obesity and high-fat diet (HFD)-fed mice as revealed by using human intestine specimens or HFD/high-fat, high-cholesterol, and high-fructose diet (HFCFD)-fed C57BL/6N mice and PPARA -humanized, peroxisome proliferator response element-luciferase mice. Intestine-specific Ppara or Fabp1 disruption in mice fed a HFD or HFCFD decreased obesity-associated metabolic disorders and NASH. Molecular analyses by luciferase reporter assays and chromatin immunoprecipitation assays in combination with fatty acid uptake assays in primary intestinal organoids revealed that intestinal PPARα induced the expression of FABP1 that in turn mediated the effects of intestinal PPARα in modulating fatty acid uptake. The PPARα antagonist GW6471 improved obesity and NASH, dependent on intestinal PPARα or FABP1. Double-knockout ( Ppara/Fabp1ΔIE ) mice demonstrated that intestinal Ppara disruption failed to further decrease obesity and NASH in the absence of intestinal FABP1. Translationally, GW6471 reduced human PPARA-driven intestinal fatty acid uptake and improved obesity-related metabolic dysfunctions in PPARA -humanized, but not Ppara -null, mice. CONCLUSIONS: Intestinal PPARα signaling promotes NASH progression through regulating dietary fatty acid uptake through modulation of FABP1, which provides a compelling therapeutic target for NASH treatment.
Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , PPAR alfa/metabolismo , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Dieta Hiperlipídica/efeitos adversos , Obesidade/metabolismo , Camundongos Knockout , Intestinos , Proteínas de Ligação a Ácido Graxo/metabolismo , Proteínas de Ligação a Ácido Graxo/farmacologia , Ácidos Graxos/metabolismoRESUMO
A major component of the extracellular matrix (ECM), laminins, modulates cells via diverse receptors. Their fragments have emerging utility as components of "ECM-mimetics" optimized to promote cell-based therapies. Recently, we reported that a bioactive laminin peptide known as A99 enhanced cell binding and spreading via fusion to an elastin-like polypeptide (ELP). The ELP "handle" serves as a rapid, noncovalent strategy to concentrate bioactive peptide mixtures onto a surface. We now report that this strategy can be further generalized across an expanded panel of additional laminin-derived elastin-like polypeptides (LELPs). A99 (AGTFALRGDNPQG), A2G80 (VQLRNGFPYFSY), AG73 (RKRLQVQLSIRT), and EF1m (LQLQEGRLHFMFD) all promote cell spreading while showing morphologically distinct F-actin formation. Equimolar mixtures of A99:A2G80-LELPs have synergistic effects on adhesion and spreading. Finally, three of these ECM-mimetics promote the neurite outgrowth of PC-12 cells. The evidence presented here demonstrates the potential of ELPs to deposit ECM-mimetics with applications in regenerative medicine, cell therapy, and tissue engineering.
Assuntos
Adesão Celular , Elastina , Laminina , Laminina/química , Laminina/farmacologia , Elastina/química , Animais , Ratos , Células PC12 , Adesão Celular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Matriz Extracelular/química , Peptídeos/química , Peptídeos/farmacologia , Polipeptídeos Semelhantes à ElastinaRESUMO
Several basic leucine zipper (bZIP) transcription factors have accessory motifs in their DNA-binding domains, such as the CNC motif of CNC family or the EHR motif of small Maf (sMaf) proteins. CNC family proteins heterodimerize with sMaf proteins to recognize CNC-sMaf binding DNA elements (CsMBEs) in competition with sMaf homodimers, but the functional role of the CNC motif remains elusive. In this study, we report the crystal structures of Nrf2/NFE2L2, a CNC family protein regulating anti-stress transcriptional responses, in a complex with MafG and CsMBE. The CNC motif restricts the conformations of crucial Arg residues in the basic region, which form extensive contact with the DNA backbone phosphates. Accordingly, the Nrf2-MafG heterodimer has approximately a 200-fold stronger affinity for CsMBE than canonical bZIP proteins, such as AP-1 proteins. The high DNA affinity of the CNC-sMaf heterodimer may allow it to compete with the sMaf homodimer on target genes without being perturbed by other low-affinity bZIP proteins with similar sequence specificity.
Assuntos
Regulação da Expressão Gênica , Fator 2 Relacionado a NF-E2 , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , DNA/genéticaRESUMO
Prenylation of peptides is widely observed in the secondary metabolites of diverse organisms, granting peptides unique chemical properties distinct from proteinogenic amino acids. Discovery of prenylated peptide agents has largely relied on isolation or genome mining of naturally occurring molecules. To devise a platform technology for de novo discovery of artificial prenylated peptides targeting a protein of choice, here we have integrated the thioether-macrocyclic peptide (teMP) library construction/selection technology, so-called RaPID (Random nonstandard Peptides Integrated Discovery) system, with a Trp-C3-prenyltransferase KgpF involved in the biosynthesis of a prenylated natural product. This unique enzyme exhibited remarkably broad substrate tolerance, capable of modifying various Trp-containing teMPs to install a prenylated residue with tricyclic constrained structure. We constructed a vast library of prenylated teMPs and subjected it to in vitro selection against a phosphoglycerate mutase. This selection platform has led to the identification of a pseudo-natural prenylated teMP inhibiting the target enzyme with an IC50 of 30â nM. Importantly, the prenylation was essential for the inhibitory activity, enhanced serum stability, and cellular uptake of the peptide, highlighting the benefits of peptide prenylation. This work showcases the de novo discovery platform for pseudo-natural prenylated peptides, which is readily applicable to other drug targets.
Assuntos
Prenilação , Ligantes , Humanos , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Peptídeos Cíclicos/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Peptídeos/farmacologia , Compostos Macrocíclicos/química , Compostos Macrocíclicos/farmacologia , Compostos Macrocíclicos/metabolismo , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Produtos Biológicos/metabolismo , Dimetilaliltranstransferase/metabolismo , Dimetilaliltranstransferase/química , Dimetilaliltranstransferase/antagonistas & inibidores , Prenilação de ProteínaRESUMO
Prenyltransferases in cyanobactin biosynthesis are of growing interest as peptide alkylation biocatalysts, but their prenylation modes characterized so far have been limited to dimethylallylation (C5) or geranylation (C10). Here we engaged in structure-guided engineering of the prenyl-binding pocket of a His-C2-geranyltransferase LimF to modulate its prenylation mode. Contraction of the pocket by a single mutation led to a His-C2-dimethylallyltransferase. More importantly, pocket expansion by a double mutation successfully repurposed LimF for farnesylation (C15), which is an unprecedented mode in this family. Furthermore, the obtained knowledge of the essential residues to construct the farnesyl-binding pocket has allowed for rational design of a Tyr-O-farnesyltransferase by a triple mutation of a Tyr-O-dimethylallyltransferase PagF. These results provide an approach to manipulate the prenyl specificity of cyanobactin prenyltransferases, broadening the chemical space covered by this class of enzymes and expanding the toolbox of peptide alkylation biocatalysts.
Assuntos
Dimetilaliltranstransferase , Dimetilaliltranstransferase/química , Peptídeos Cíclicos , Prenilação , Peptídeos/química , Especificidade por SubstratoRESUMO
Most human malignant neoplasms show loss of primary cilia (PC). However, PC are known to be retained and involved in tumorigenesis in some types of neoplasms. The PC status in lung carcinomas remains largely uninvestigated. In this study, we comprehensively assessed the PC status in lung carcinomas. A total of 492 lung carcinomas, consisting of adenocarcinomas (ACs) (n = 319), squamous cell carcinomas (SCCs) (n = 152), and small cell lung carcinomas (SCLCs) (n = 21), were examined by immunohistochemical analysis using an antibody against ARL13B, a marker of PC. The PC-positive rate was markedly higher in SCLCs (81.0%) than in ACs (1.6%) and SCCs (7.9%). We subsequently performed analyses to characterize the PC-positive lung carcinomas further. PC-positive lung carcinomas were more numerous and had longer PC than normal cells. The presence of PC in these cells was not associated with the phase of the cell cycle. We also found that the PC were retained even in metastases from PC-positive lung carcinomas. Furthermore, the hedgehog signaling pathway was activated in PC-positive lung carcinomas. Because ARL13B immunohistochemistry of lung carcinoids (n = 10) also showed a statistically significantly lower rate (10.0%) of PC positivity than SCLCs, we searched for a gene(s) that might be upregulated in PC-positive SCLCs compared with lung carcinoids, but not in PC-negative carcinomas. This search, and further cell culture experiments, identified HYLS1 as a gene possessing the ability to regulate ciliogenesis in PC-positive lung carcinomas. In conclusion, our findings indicate that PC are frequently present in SCLCs but not in non-SCLCs (ACs and SCCs) or lung carcinoids, and their PC exhibit various specific pathobiological characteristics. This suggests an important link between lung carcinogenesis and PC.
Assuntos
Adenocarcinoma , Tumor Carcinoide , Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Pequenas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Humanos , Cílios/metabolismo , Cílios/patologia , Carcinoma de Células Pequenas/genética , Carcinoma de Células Pequenas/metabolismo , Carcinoma de Células Pequenas/patologia , Proteínas Hedgehog , Neoplasias Pulmonares/genética , Tumor Carcinoide/genética , Tumor Carcinoide/metabolismo , Tumor Carcinoide/patologia , Adenocarcinoma/metabolismo , Pulmão/metabolismo , ProteínasRESUMO
AFF3 at 2q11.2 encodes the nuclear transcriptional activator AF4/FMR2 Family Member 3. AFF3 constitutes super elongation complex like 3, which plays a role in promoting the expression of genes involved in neurogenesis and development. The degron motif in AFF3 with nine highly conserved amino acids is recognized by E3 ubiquitin ligase to induce protein degradation. Recently, AFF3 missense variants in this region and variants featuring deletion including this region were identified and shown to cause KINSSHIP syndrome. In this study, we identified two novel and one previously reported missense variants in the degron of AFF3 in three unrelated Japanese patients. Notably, two of these three variants exhibited mosaicism in the examined tissues. This study suggests that mosaic variants also cause KINSSHIP syndrome, showing various phenotypes.
Assuntos
Células Germinativas , Fatores de Transcrição , Humanos , Fatores de Transcrição/genética , Fenótipo , Proteínas NuclearesRESUMO
The arginine-glycine-aspartic acid (RGD) motif is a cell adhesion sequence that binds to integrins. Some RGD-containing peptides promote adhesion of both embryonic stem cells and induced pluripotent stem cells (iPSCs); however, not all such RGD-containing peptides are active. In this study, we elucidated the role of RGD-neighboring sequences on iPSC adhesion using diverse synthetic peptides and recombinant proteins. Our results indicate that iPSC adhesion requires RGDX1 X2 sequences, such as RGDVF and RGDNY, and that the X1 X2 residues are essential for the adhesion via integrin αvß5 but not αvß3. iPSCs express integrin αvß5 but not αvß3; therefore, iPSC adhesion requires the RGDX1 X2 -containing sequences. The importance of the X1 X2 residues was confirmed with both HeLa and A549 cells, which express integrin αvß5 but not αvß3. Analysis of RGD-neighboring sequences provides important insights into ligand-binding specificity of integrins. Identification of integrin αvß5-binding motifs is potentially useful in drug development, drug delivery, cell culture, and tissue engineering.
Assuntos
Células-Tronco Pluripotentes , Receptores de Vitronectina , Adesão Celular/fisiologia , Integrina alfaVbeta3/genética , Oligopeptídeos/química , Peptídeos/química , Células-Tronco Pluripotentes/metabolismo , Receptores de Vitronectina/genética , Receptores de Vitronectina/metabolismoRESUMO
Bioengineering of ribosomally synthesized and post-translationally modified peptides (RiPPs) is an emerging approach to explore the diversity of pseudo-natural product structures for drug discovery purposes. However, despite the initial advances in this area, bioactivity reprogramming of multienzyme RiPP biosynthetic pathways remains a major challenge. Here, we report a platform for de novo discovery of functional thiopeptides based on reengineered biosynthesis of lactazole A, a RiPP natural product assembled by five biosynthetic enzymes. The platform combines in vitro biosynthesis of lactazole-like thiopeptides and mRNA display to prepare and screen large (≥1012) combinatorial libraries of pseudo-natural products. We demonstrate the utility of the developed protocols in an affinity selection against Traf2- and NCK-interacting kinase (TNIK), a protein involved in several cancers, which yielded a plethora of candidate thiopeptides. Of the 11 synthesized compounds, 9 had high affinities for the target kinase (best KD = 1.2 nM) and 10 inhibited its enzymatic activity (best Ki = 3 nM). X-ray structural analysis of the TNIK/thiopeptide interaction revealed the unique mode of substrate-competitive inhibition exhibited by two of the discovered compounds. The thiopeptides internalized to the cytosol of HEK293H cells as efficiently as the known cell-penetrating peptide Tat (4-6 µM). Accordingly, the most potent compound, TP15, inhibited TNIK in HCT116 cells. Altogether, our platform enables the exploration of pseudo-natural thiopeptides with favorable pharmacological properties in drug discovery applications.
Assuntos
Produtos Biológicos , Produtos Biológicos/farmacologia , Produtos Biológicos/metabolismo , Processamento de Proteína Pós-Traducional , Peptídeos/química , Vias Biossintéticas , Descoberta de DrogasRESUMO
GRIA3 at Xq25 encodes glutamate ionotropic receptor AMPA type 3 (GluA3), a subunit of postsynaptic glutamate-gated ion channels mediating neurotransmission. Hemizygous loss-of-function (LOF) variants in GRIA3 cause a neurodevelopmental disorder (NDD) in male individuals. Here, we report a gain-of-function (GOF) variant at GRIA3 in a male patient. We identified a hemizygous de novo missense variant in GRIA3 in a boy with an NDD: c.1844C > T (p.Ala615Val) using whole-exome sequencing. His neurological signs, such as hypertonia and hyperreflexia, were opposite to those in previous cases having LOF GRIA3 variants. His seizures and hypertonia were ameliorated by carbamazepine, inhibiting glutamate release from presynapses. Patch-clamp recordings showed that the human GluA3 mutant (p.Ala615Val) had slower desensitization and deactivation kinetics. A fly line expressing a human GluA3 mutant possessing our variant and the Lurcher variant, which makes ion channels leaky, showed developmental defects, while one expressing a mutant possessing either of them did not. Collectively, these results suggest that p.Ala615Val has GOF effects. GRIA3 GOF variants may cause an NDD phenotype distinctive from that of LOF variants, and drugs suppressing glutamatergic neurotransmission may ameliorate this phenotype. This study should help in refining the clinical management of GRIA3-related NDDs.
Assuntos
Carbamazepina/uso terapêutico , Antagonistas de Aminoácidos Excitatórios/uso terapêutico , Mutação com Ganho de Função , Transtornos do Neurodesenvolvimento/tratamento farmacológico , Transtornos do Neurodesenvolvimento/genética , Receptores de AMPA/genética , Substituição de Aminoácidos , Animais , Animais Geneticamente Modificados , Pré-Escolar , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Células HEK293 , Humanos , Masculino , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação de Sentido Incorreto , Transtornos do Neurodesenvolvimento/metabolismo , Técnicas de Patch-Clamp , Fenótipo , Receptores de AMPA/química , Receptores de AMPA/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismoRESUMO
TET3 at 2p13.1 encodes tet methylcytosine dioxygenase 3, a demethylation enzyme that converts 5-methylcytosine to 5-hydroxymethylcytosine. Beck et al. reported that patients with TET3 abnormalities in either an autosomal dominant or recessive inheritance fashion clinically showed global developmental delay, intellectual disability, and dysmorphisms. In this study, exome sequencing identified both mono- and biallelic TET3 variants in two families: a de novo variant NM_001287491.1:c.3028 A > G:p.(Asn1010Asp), and compound heterozygous variants NM_001287491.1:c.[2077 C > T];[2896 T > G],p.[Gln693*];[Cys966Gly]. Despite the different inheritance modes, the affected individuals showed similar phenotypic features. Including these three patients, only 14 affected individuals have been reported to date. The accumulation of data regarding individuals with TET3-related disorder is necessary to describe their clinical spectrum.
Assuntos
Anormalidades Craniofaciais , Dioxigenases , Deficiência Intelectual , Dioxigenases/genética , Humanos , Deficiência Intelectual/genética , Sequenciamento do ExomaRESUMO
Withaferin A (WA) is a natural steroidal compound used in Ayurvedic medicine in India and elsewhere. Although WA was used as an anticancer reagent for decades, its role in the treatment of liver diseases has only recently been experimentally explored. Here, the effects of WA in the treatment of liver injury, systematic inflammation, and liver cancer are reviewed, and the toxicity and metabolism of WA as well as pharmacological potentials of other extracts from Withania somnifera (W. somnifera) discussed. The pharmacokinetic behaviors of WA are summarized and pharmacokinetic insights into current progress and future opportunities are highlighted. SIGNIFICANCE STATEMENT: This review outlines the current experimental progress of Withaferin A (WA) hepatoprotective activities and highlights gaps in the field. This work also discusses the pharmacokinetics of WA that can be used to guide future studies for the possible treatment of liver diseases with this compound.
Assuntos
Hepatopatias , Withania , Vitanolídeos , Humanos , Hepatopatias/tratamento farmacológico , Ayurveda , Vitanolídeos/farmacocinética , Vitanolídeos/uso terapêuticoRESUMO
St. John's wort (SJW), from traditional herbs, activates the pregnane X receptor (PXR), a potential drug target for treating inflammatory bowel disease (IBD). However, how SJW alleviates dextran sodium sulfate (DSS)-induced experimental IBD by activating PXR is unknown. To test this, PXR-humanized, wild-type (WT) and Pxr-null mice, primary intestinal organoids cultures, and the luciferase reporter gene assays were employed. In vivo, a diet supplemented with SJW was found to activate intestinal PXR both in WT and PXR-humanized mice, but not in Pxr-null mice. SJW prevented DSS-induced IBD in PXR-humanized and WT mice, but not in Pxr-null mice. In vitro, hyperforin, a major component of SJW, activated PXR and suppressed tumor necrosis factor (TNF)α-induced nuclear factor (NF) κB translocation in primary intestinal organoids from PXR-humanized mice, but not Pxr-null mice. Luciferase reporter gene assays showed that hyperforin dose-dependently alleviated TNFα-induced NFκB transactivation by activating human PXR in Caco2 cells. Furthermore, SJW therapeutically attenuated DSS-induced IBD in PXR-humanized mice. These data indicate the therapeutic potential of SJW in alleviating DSS-induced IBD in vivo, and TNFα-induced NFκB activation in vitro, dependent on PXR activation, which may have clinical implications for using SJW as a herbal drug anti-IBD treatment.
Assuntos
Anti-Inflamatórios/farmacologia , Hypericum/química , Doenças Inflamatórias Intestinais/tratamento farmacológico , Extratos Vegetais/farmacologia , Receptor de Pregnano X/fisiologia , Animais , Células CACO-2 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/metabolismoRESUMO
Neurons require adhesive scaffolds for their growth and differentiation. Laminins are a major cell adhesive component of basement membranes and have various biological activities in the peripheral and central nervous systems. Here, we evaluated the biological activities of 5 peptides derived from laminin-111 as a scaffold for mouse neuroblastoma Neuro2a cells and rat neural stem/progenitor cells (NPCs). The 5 peptides showed Neuro2a cell attachment activity similar to that of poly-d-lysine. However, when NPCs were cultured on the peptides, 2 syndecan-binding peptides, AG73 (RKRLQVQLSIRT, mouse laminin α1 chain 2719-2730) and C16 (KAFDITYVRLKF, laminin γ1 chain 139-150), demonstrated significantly higher cell attachment and neurite extension activities than other peptides including integrin-binding ones. Long-term cell culture experiments showed that both AG73 and C16 supported the growth of neurons and astrocytes that had differentiated from NPCs. Furthermore, C16 markedly promoted the expression of neuronal markers such as synaptosomal-associated protein-25 and syntaxin 1A. These results indicate that AG73 and C16 are useful for NPC cultures and that C16 can be applied to specialized research on synapses in differentiated neurons. These peptides have the potential for use as valuable biomaterials for NPC research.
Assuntos
Laminina/química , Células-Tronco Neurais/efeitos dos fármacos , Neuroblastoma/tratamento farmacológico , Neurogênese , Fragmentos de Peptídeos/farmacologia , Animais , Materiais Biocompatíveis/química , Quitosana/química , Camundongos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Ratos , Ratos Wistar , Células Tumorais CultivadasRESUMO
Octa-arginine (R8) has been extensively studied as a cell-penetrating peptide. R8 binds to diverse transmembrane heparan sulfate proteoglycans (HSPGs), including syndecans, and is internalized by cells. R8 is also reported to bind to integrin ß1. In this study, we evaluated the biological activities of R8 and octa-lysine (K8), a peptide similar to R8, with a focus on cell adhesion. R8 and K8 were immobilized on aldehyde-agarose matrices via covalent conjugation, and the effect of these peptides on cell attachment, spreading, and proliferation was examined using human dermal fibroblasts. The results indicated that R8- and K8-matrices mediate cell adhesion mainly via HSPGs. Moreover, R8- and K8-matrices interacted with integrin ß1 and promote cell spreading and proliferation. These results are useful for further understanding of the R8-membrane interactions and the cellular uptake mechanisms. In addition, the R8- and K8-matrices may potentially be used as a multi-functional biomaterial to promote cell adhesion, spreading, and proliferation.
Assuntos
Fibroblastos/efeitos dos fármacos , Proteoglicanas de Heparan Sulfato/metabolismo , Integrinas/metabolismo , Lisina/química , Lisina/farmacologia , Oligopeptídeos/farmacologia , Actinas/fisiologia , Adesão Celular/efeitos dos fármacos , Proliferação de Células , Ácido Edético/farmacologia , Fibroblastos/fisiologia , Adesões Focais/efeitos dos fármacos , Adesões Focais/fisiologia , Heparina/farmacologia , HumanosRESUMO
Octa-arginine (R8) is a cell-permeable peptide with excellent cell adhesion properties. Surface-immobilized R8 mediates cell attachment via cell surface receptors, such as heparan sulfate proteoglycans and integrin ß1, and promotes cell spreading and proliferation. However, it is not clear how these properties are affected by specific peptide composition and if they could be improved. Here, we synthesized XR8 peptides, in which half of the original R8 arginine residues were replaced with another amino acid (X). We then aimed to investigate the effect of the substitution on cell adhesion and proliferation on XR8-conjugated agarose matrices. The XR8-matrix showed slightly better cell attachment when X was a hydrophobic or aromatic amino acid. However, hydrophobic XR8-matrices tended to promote cell proliferation to a less extent. Eventually, YR8-matrix most efficiently promoted cell adhesion, spreading, and proliferation among the XR8-matrices tested. Collectively, these observations indicate that the properties of residue X play a major role in the biological activity of XR8-matrices and shed light on the interaction between small peptides and the cell membrane. Further, YR8 is a promising cell-adhesive peptide for the development of cell culture substrates and biomaterials.