Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 622(7982): 251-254, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37821589

RESUMO

Planets grow in rotating disks of dust and gas around forming stars, some of which can subsequently collide in giant impacts after the gas component is removed from the disk1-3. Monitoring programmes with the warm Spitzer mission have recorded substantial and rapid changes in mid-infrared output for several stars, interpreted as variations in the surface area of warm, dusty material ejected by planetary-scale collisions and heated by the central star: for example, NGC 2354-ID8 (refs. 4,5), HD 166191 (ref. 6) and V488 Persei7. Here we report combined observations of the young (about 300 million years old), solar-like star ASASSN-21qj: an infrared brightening consistent with a blackbody temperature of 1,000 Kelvin and a luminosity that is 4 percent that of the star lasting for about 1,000 days, partially overlapping in time with a complex and deep, wavelength-dependent optical eclipse that lasted for about 500 days. The optical eclipse started 2.5 years after the infrared brightening, implying an orbital period of at least that duration. These observations are consistent with a collision between two exoplanets of several to tens of Earth masses at 2-16 astronomical units from the central star. Such an impact produces a hot, highly extended post-impact remnant with sufficient luminosity to explain the infrared observations. Transit of the impact debris, sheared by orbital motion into a long cloud, causes the subsequent complex eclipse of the host star.

3.
Sci Adv ; 6(3): eaax7467, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31998838

RESUMO

Our nearest neighbor, Proxima Centauri, hosts a temperate terrestrial planet. We detected in radial velocities evidence of a possible second planet with minimum mass m c sin i c = 5.8 ± 1.9M ⊕ and orbital period P c = 5.21 - 0.22 + 0.26 years. The analysis of photometric data and spectro-scopic activity diagnostics does not explain the signal in terms of a stellar activity cycle, but follow-up is required in the coming years for confirming its planetary origin. We show that the existence of the planet can be ascertained, and its true mass can be determined with high accuracy, by combining Gaia astrometry and radial velocities. Proxima c could become a prime target for follow-up and characterization with next-generation direct imaging instrumentation due to the large maximum angular separation of ~1 arc second from the parent star. The candidate planet represents a challenge for the models of super-Earth formation and evolution.

4.
Sci Rep ; 7(1): 5906, 2017 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-28724922

RESUMO

HD 66051 is an eclipsing system with an orbital period of about 4.75 d that exhibits out-of-eclipse variability with the same period. New multicolour photometric observations confirm the longevity of the secondary variations, which we interpret as a signature of surface inhomogeneities on one of the components. Using archival and newly acquired high-resolution spectra, we have performed a detailed abundance analysis. The primary component is a slowly rotating late B-type star (T eff = 12500 ± 200 K; log g = 4.0, v sin i = 27 ± 2 km s-1) with a highly peculiar composition reminiscent of the singular HgMn-related star HD 65949, which seems to be its closest analogue. Some light elements as He, C, Mg, Al are depleted, while Si and P are enhanced. Except for Ni, all the iron-group elements, as well as most of the heavy elements, and in particular the REE elements, are overabundant. The secondary component was estimated to be a slowly rotating A-type star (T eff ~ 8000 K; log g = 4.0, v sin i ~ 18 km s-1). The unique configuration of HD 66051 opens up intriguing possibilities for future research, which might eventually and significantly contribute to the understanding of such diverse phenomena as atmospheric structure, mass transfer, magnetic fields, photometric variability and the origin of chemical anomalies observed in HgMn stars and related objects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA