Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(15): e2309636121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38573964

RESUMO

Rates of microbial processes are fundamental to understanding the significance of microbial impacts on environmental chemical cycling. However, it is often difficult to quantify rates or to link processes to specific taxa or individual cells, especially in environments where there are few cultured representatives with known physiology. Here, we describe the use of the redox-enzyme-sensitive molecular probe RedoxSensor™ Green to measure rates of anaerobic electron transfer physiology (i.e., sulfate reduction and methanogenesis) in individual cells and link those measurements to genomic sequencing of the same single cells. We used this method to investigate microbial activity in hot, anoxic, low-biomass (~103 cells mL-1) groundwater of the Death Valley Regional Flow System, California. Combining this method with electron donor amendment experiments and metatranscriptomics confirmed that the abundant spore formers including Candidatus Desulforudis audaxviator were actively reducing sulfate in this environment, most likely with acetate and hydrogen as electron donors. Using this approach, we measured environmental sulfate reduction rates at 0.14 to 26.9 fmol cell-1 h-1. Scaled to volume, this equates to a bulk environmental rate of ~103 pmol sulfate L-1 d-1, similar to potential rates determined with radiotracer methods. Despite methane in the system, there was no evidence for active microbial methanogenesis at the time of sampling. Overall, this method is a powerful tool for estimating species-resolved, single-cell rates of anaerobic metabolism in low-biomass environments while simultaneously linking genomes to phenomes at the single-cell level. We reveal active elemental cycling conducted by several species, with a large portion attributable to Ca. Desulforudis audaxviator.


Assuntos
Ecossistema , Meio Ambiente , Transporte de Elétrons , Sulfatos/química , Respiração Celular
2.
J Appl Microbiol ; 132(3): 1724-1737, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34724303

RESUMO

AIMS: The Hawaiian Bobtail Squid (Euprymna scolopes) is a model organism for investigating host-symbiont relationships. The current scientific focus is on the microbiome within E. scolopes, while very little is known about the microbiome of the tanks housing E. scolopes. We examined the hypothesis that bacterial communities and geochemistry within the squid tank environment correlate with the production of viable paralarval squid. METHODS AND RESULTS: Total DNA was extracted from sediment and filtered water samples from 'productive' squid cohorts with high embryonic survival and paralarval hatching, 'unproductive' cohorts with low embryonic survival and paralarval hatching. As a control total DNA was extracted from environmental marine locations where E. scolopes is indigenous. Comparative analysis of the bacterial communities by the 16S rRNA gene was performed using next generation sequencing. Thirty-eight differentially abundant genera were identified in the adult tank waters. The majority of the sequences represented unclassified, candidate or novel genera. The characterized genera included Aquicella, Woeseia and Ferruginibacter, with Hyphomicrobium and Rhizohapis were found to be more abundant in productive adult tank water. In addition, nitrate and pH covaried with productive cohorts, explaining 67% of the bacterial populations. The lower abundance of nitrate-reducing bacteria in unproductive adult tank water could explain detected elevated nitrate levels. CONCLUSIONS: We conclude that microbiome composition and water geochemistry can negatively affect E. scolopes reproductive physiology in closed tank systems, ultimately impacting host-microbe research using these animals. SIGNIFICANCE AND IMPACT OF STUDY: These results identify the tight relationship between the microbiome and geochemistry to E. scolopes. From this study, it may be possible to design probiotic counter-measures to improve aquaculture conditions for E. scolopes.


Assuntos
Decapodiformes , Microbiota , Aliivibrio fischeri/genética , Animais , Aquicultura , Decapodiformes/genética , Decapodiformes/microbiologia , Havaí , RNA Ribossômico 16S/genética , Simbiose
3.
BMC Genomics ; 22(1): 209, 2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33757423

RESUMO

BACKGROUND: There is a dearth of sequenced and closed microbial genomes from environments that exceed > 500 m below level terrestrial surface. Coupled with even fewer cultured isolates, study and understanding of how life endures in the extreme oligotrophic subsurface environments is greatly hindered. Using a de novo hybrid assembly of Illumina and Oxford Nanopore sequences we produced a circular genome with corresponding methylome profile of the recently characterized thermophilic, anaerobic, and fumarate-respiring subsurface bacterium, Thermanaerosceptrum fracticalcis, strain DRI-13T to understand how this microorganism survives the deep subsurface. RESULTS: The hybrid assembly produced a single circular genome of 3.8 Mb in length with an overall GC content of 45%. Out of the total 4022 annotated genes, 3884 are protein coding, 87 are RNA encoding genes, and the remaining 51 genes were associated with regulatory features of the genome including riboswitches and T-box leader sequences. Approximately 24% of the protein coding genes were hypothetical. Analysis of strain DRI-13T genome revealed: 1) energy conservation by bifurcation hydrogenase when growing on fumarate, 2) four novel bacterial prophages, 3) methylation profile including 76.4% N6-methyladenine and 3.81% 5-methylcytosine corresponding to novel DNA methyltransferase motifs. As well a cluster of 45 genes of unknown protein families that have enriched DNA mCpG proximal to the transcription start sites, and 4) discovery of a putative core of bacteriophage exclusion (BREX) genes surrounded by hypothetical proteins, with predicted functions as helicases, nucleases, and exonucleases. CONCLUSIONS: The de novo hybrid assembly of strain DRI-13T genome has provided a more contiguous and accurate view of the subsurface bacterium T. fracticalcis, strain DRI-13T. This genome analysis reveals a physiological focus supporting syntrophy, non-homologous double stranded DNA repair, mobility/adherence/chemotaxis, unique methylome profile/recognized motifs, and a BREX defense system. The key to microbial subsurface survival may not rest on genetic diversity, but rather through specific syntrophy niches and novel methylation strategies.


Assuntos
Epigenoma , Sequenciamento de Nucleotídeos em Larga Escala , Anaerobiose , Composição de Bases , Genoma , Genoma Bacteriano , Humanos
4.
Microb Ecol ; 69(2): 333-45, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25319238

RESUMO

The conversion of lignocellulosic biomass into biofuels can potentially be improved by employing robust microorganisms and enzymes that efficiently deconstruct plant polysaccharides at elevated temperatures. Many of the geothermal features of Yellowstone National Park (YNP) are surrounded by vegetation providing a source of allochthonic material to support heterotrophic microbial communities adapted to utilize plant biomass as a primary carbon and energy source. In this study, a well-known hot spring environment, Obsidian Pool (OBP), was examined for potential biomass-active microorganisms using cultivation-independent and enrichment techniques. Analysis of 33,684 archaeal and 43,784 bacterial quality-filtered 16S rRNA gene pyrosequences revealed that archaeal diversity in the main pool was higher than bacterial; however, in the vegetated area, overall bacterial diversity was significantly higher. Of notable interest was a flooded depression adjacent to OBP supporting a stand of Juncus tweedyi, a heat-tolerant rush commonly found growing near geothermal features in YNP. The microbial community from heated sediments surrounding the plants was enriched in members of the Firmicutes including potentially (hemi)cellulolytic bacteria from the genera Clostridium, Anaerobacter, Caloramator, Caldicellulosiruptor, and Thermoanaerobacter. Enrichment cultures containing model and real biomass substrates were established at a wide range of temperatures (55-85 °C). Microbial activity was observed up to 80 °C on all substrates including Avicel, xylan, switchgrass, and Populus sp. Independent of substrate, Caloramator was enriched at lower (<65 °C) temperatures while highly active cellulolytic bacteria Caldicellulosiruptor were dominant at high (>65 °C) temperatures.


Assuntos
Archaea/classificação , Bactérias/classificação , Biomassa , Fontes Termais/microbiologia , Filogenia , Archaea/genética , Archaea/isolamento & purificação , Bactérias/genética , Bactérias/isolamento & purificação , Biocombustíveis , Celulose/química , Clonagem Molecular , DNA Arqueal/genética , DNA Bacteriano/genética , Temperatura Alta , Lignina/química , Peso Molecular , Filogeografia , Populus/química , Populus/microbiologia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Wyoming , Xilanos/química
5.
J Vis Exp ; (203)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38284544

RESUMO

Culture-dependent research of anaerobic microorganisms rests upon methodological competence. These methods must create and maintain suitable growth conditions (e.g., pH and carbon sources) for anaerobic microorganisms while also allowing samples to be extracted without compromising the artificial environment. To this end, methods that are informed by and simulate an in situ environment can be of great aid in culturing microorganisms from that environment. Here, we outline an in situ informed and simulated anaerobic method for culturing terrestrial surface and subsurface microorganisms, emphasizing anaerobic sample collection with minimal perturbation. This protocol details the production of a customizable anaerobic liquid medium, and the environmental acquisition and in vitro growth of anaerobic microorganisms. The protocol also covers critical components of an anaerobic bioreactor used for environmental simulations of sediment and anaerobic liquid media for environmentally acquired cultures. We have included preliminary Next Generation Sequencing data from a maintained microbiome over the lifespan of a bioreactor where the active culture dynamically adjusted in response to an experimental carbon source.


Assuntos
Reatores Biológicos , Carbono , Anaerobiose
6.
Sci Adv ; 10(31): eado5555, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39093965

RESUMO

Because of the decreasing supply of new antibiotics, recent outbreaks of infectious diseases, and the emergence of antibiotic-resistant microorganisms, it is imperative to develop new effective strategies for deactivating a broad spectrum of microorganisms and viruses. We have implemented electrically polarized nanoscale metallic (ENM) coatings that deactivate a wide range of microorganisms including Gram-negative and Gram-positive bacteria with greater than 6-log reduction in less than 10 minutes of treatment. The electrically polarized devices were also effective in deactivating lentivirus and Candida albicans. The key to the high deactivation effectiveness of ENM devices is electrochemical production of micromolar cuprous ions, which mediated reduction of oxygen to hydrogen peroxide. Formation of highly damaging species, hydroxyl radicals and hypochlorous acid, from hydrogen peroxide contributed to antimicrobial properties of the ENM devices. The electric polarization of nanoscale coatings represents an unconventional tool for deactivating a broad spectrum of microorganisms through in situ production of reactive oxygenated and chlorinated species.


Assuntos
Peróxido de Hidrogênio , Peróxido de Hidrogênio/metabolismo , Oxigênio/metabolismo , Oxigênio/química , Candida albicans/efeitos dos fármacos , Candida albicans/metabolismo , Propriedades de Superfície , Espécies Reativas de Oxigênio/metabolismo , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Oxirredução
7.
Extremophiles ; 17(2): 251-63, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23345010

RESUMO

A novel sulfate-reducing bacterium designated OPF15(T) was isolated from Obsidian Pool, Yellowstone National Park, Wyoming. The phylogeny of 16S rRNA and functional genes (dsrAB) placed the organism within the family Thermodesulfobacteriaceae. The organism displayed hyperthermophilic temperature requirements for growth with a range of 70-90 °C and an optimum of 83 °C. Optimal pH was around 6.5-7.0 and the organism required the presence of H2 or formate as an electron donor and CO2 as a carbon source. Electron acceptors supporting growth included sulfate, thiosulfate, and elemental sulfur. Lactate, acetate, pyruvate, benzoate, oleic acid, and ethanol did not serve as electron donors. Membrane lipid analysis revealed diacyl glycerols and acyl/ether glycerols which ranged from C14:0 to C20:0. Alkyl chains present in acyl/ether and diether glycerol lipids ranged from C16:0 to C18:0. Straight, iso- and anteiso-configurations were found for all lipid types. The presence of OPF15(T) was also shown to increase cellulose consumption during co-cultivation with Caldicellulosiruptor obsidiansis, a fermentative, cellulolytic extreme thermophile isolated from the same environment. On the basis of phylogenetic, phenotypic, and structural analyses, Thermodesulfobacterium geofontis sp. nov. is proposed as a new species with OPF15(T) representing the type strain.


Assuntos
Fontes Termais/microbiologia , Bactérias Redutoras de Enxofre/isolamento & purificação , Temperatura , Dióxido de Carbono/metabolismo , Celulose/metabolismo , Formiatos/metabolismo , Genes Bacterianos , Genes de RNAr , Glicerol/metabolismo , Hidrogênio/metabolismo , Concentração de Íons de Hidrogênio , Lipídeos de Membrana/metabolismo , Filogenia , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Compostos de Enxofre/metabolismo , Bactérias Redutoras de Enxofre/classificação , Bactérias Redutoras de Enxofre/genética , Bactérias Redutoras de Enxofre/metabolismo , Wyoming
8.
J Bacteriol ; 194(15): 4015-28, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22636774

RESUMO

Extremely thermophilic bacteria of the genus Caldicellulosiruptor utilize carbohydrate components of plant cell walls, including cellulose and hemicellulose, facilitated by a diverse set of glycoside hydrolases (GHs). From a biofuel perspective, this capability is crucial for deconstruction of plant biomass into fermentable sugars. While all species from the genus grow on xylan and acid-pretreated switchgrass, growth on crystalline cellulose is variable. The basis for this variability was examined using microbiological, genomic, and proteomic analyses of eight globally diverse Caldicellulosiruptor species. The open Caldicellulosiruptor pangenome (4,009 open reading frames [ORFs]) encodes 106 GHs, representing 43 GH families, but only 26 GHs from 17 families are included in the core (noncellulosic) genome (1,543 ORFs). Differentiating the strongly cellulolytic Caldicellulosiruptor species from the others is a specific genomic locus that encodes multidomain cellulases from GH families 9 and 48, which are associated with cellulose-binding modules. This locus also encodes a novel adhesin associated with type IV pili, which was identified in the exoproteome bound to crystalline cellulose. Taking into account the core genomes, pangenomes, and individual genomes, the ancestral Caldicellulosiruptor was likely cellulolytic and evolved, in some cases, into species that lost the ability to degrade crystalline cellulose while maintaining the capacity to hydrolyze amorphous cellulose and hemicellulose.


Assuntos
Biomassa , Metabolismo dos Carboidratos , Celulose/metabolismo , Bactérias Gram-Positivas/genética , Redes e Vias Metabólicas/genética , Plantas/química , Adesinas Bacterianas/análise , Adesinas Bacterianas/genética , Celulases/análise , Celulases/genética , Variação Genética , Genoma Bacteriano , Bactérias Gram-Positivas/enzimologia , Proteoma/análise
9.
Sci Total Environ ; 842: 156768, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-35738377

RESUMO

Subsurface microbial community distribution patterns are influenced by biogeochemical and groundwater fluxes and may inform hydraulic connections along groundwater-flow paths. This study examined the regional-scale microbial community of the Death Valley Regional Flow System and evaluated whether subsurface communities can be used to identify groundwater-flow paths between recharge and discharge areas. Samples were collected from 36 sites in three groundwater basins: Pahute Mesa-Oasis Valley (PMOV), Ash Meadows (AM), and Alkali Flat-Furnace Creek Ranch (AFFCR). Microbial diversity within and between communities varied by location, and communities were separated into two overall groups that affiliated with the AM and PMOV/AFFCR basins. Network analysis revealed patterns between clusters of common microbes that represented groundwaters with similar geochemical conditions and largely corroborated hydraulic connections between recharge and discharge areas. Null model analyses identified deterministic and stochastic ecological processes contributing to microbial community assemblages. Most communities were more different than expected and governed by dispersal limitation, geochemical differences, or undominating processes. However, certain communities from sites located within or near the Nevada National Security Site were more similar than expected and dominated by homogeneous dispersal or selection. Overall, the (dis)similarities between the microbial communities of DVRFS recharge and discharge areas supported previously documented hydraulic connections between: (1) Spring Mountains and Ash Meadows; (2) Frenchman and Yucca Flat and Amargosa Desert; and (3) Amargosa Desert and Death Valley. However, only a portion of the flow path between Pahute Mesa and Oasis Valley could be supported by microbial community analyses, likely due to well-associated artifacts in samples from the two Oasis Valley sites. This study demonstrates the utility of combining microbial data with hydrologic, geologic, and water-chemistry information to comprehensively characterize groundwater systems, highlighting both strengths and limitations of this approach.


Assuntos
Água Subterrânea , Microbiota , Geologia , Água Subterrânea/química , Hidrologia , Nevada
10.
J Bacteriol ; 192(22): 6099-100, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20851897

RESUMO

Caldicellulosiruptor obsidiansis OB47(T) (ATCC BAA-2073, JCM 16842) is an extremely thermophilic, anaerobic bacterium capable of hydrolyzing plant-derived polymers through the expression of multidomain/multifunctional hydrolases. The complete genome sequence reveals a diverse set of carbohydrate-active enzymes and provides further insight into lignocellulosic biomass hydrolysis at high temperatures.


Assuntos
DNA Bacteriano/química , DNA Bacteriano/genética , Genoma Bacteriano , Bactérias Gram-Positivas/genética , Anaerobiose , Celulose/metabolismo , Bactérias Gram-Positivas/metabolismo , Temperatura Alta , Hidrolases/genética , Hidrolases/metabolismo , Dados de Sequência Molecular , Análise de Sequência de DNA
11.
Appl Environ Microbiol ; 76(4): 1014-20, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20023107

RESUMO

A novel, obligately anaerobic, extremely thermophilic, cellulolytic bacterium, designated OB47(T), was isolated from Obsidian Pool, Yellowstone National Park, WY. The isolate was a nonmotile, non-spore-forming, Gram-positive rod approximately 2 microm long by 0.2 microm wide and grew at temperatures between 55 and 85 degrees C, with the optimum at 78 degrees C. The pH range for growth was 6.0 to 8.0, with values of near 7.0 being optimal. Growth on cellobiose produced the fastest specific growth rate at 0.75 h(-1). The organism also displayed fermentative growth on glucose, maltose, arabinose, fructose, starch, lactose, mannose, sucrose, galactose, xylose, arabinogalactan, Avicel, xylan, filter paper, processed cardboard, pectin, dilute acid-pretreated switchgrass, and Populus. OB47(T) was unable to grow on mannitol, fucose, lignin, Gelrite, acetate, glycerol, ribose, sorbitol, carboxymethylcellulose, and casein. Yeast extract stimulated growth, and thiosulfate, sulfate, nitrate, and sulfur were not reduced. Fermentation end products were mainly acetate, H2, and CO2, although lactate and ethanol were produced in 5-liter batch fermentations. The G+C content of the DNA was 35 mol%, and sequence analysis of the small subunit rRNA gene placed OB47(T) within the genus Caldicellulosiruptor. Based on its phylogenetic and phenotypic properties, the isolate is proposed to be designated Caldicellulosiruptor obsidiansis sp. nov. and OB47 is the type strain (ATCC BAA-2073).


Assuntos
Bactérias Anaeróbias/isolamento & purificação , Microbiologia da Água , Bactérias Anaeróbias/classificação , Bactérias Anaeróbias/genética , Bactérias Anaeróbias/metabolismo , Composição de Bases , Sequência de Bases , Celobiose/metabolismo , DNA Bacteriano/química , DNA Bacteriano/genética , Fermentação , Genes Bacterianos , Temperatura Alta , Microscopia Eletrônica de Varredura , Dados de Sequência Molecular , Fenótipo , Filogenia , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Wyoming
12.
Microorganisms ; 8(8)2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32824093

RESUMO

Clostridium carboxidivorans (P7) is one of the most important solvent-producing bacteria capable of fermenting syngas (CO, CO2, and H2) to produce chemical commodities when grown as an autotroph. This study aimed to develop ethyl methanesulfonate (EMS)-induced P7 mutants that were capable of growing in the presence of CO2 as a unique source of carbon with increased solvent formation and atmospheric CO2 reduction to limit global warming. Phenotypic analysis including growth and end product characterization of the P7 wild type (WT) demonstrated that this strain grew better at 25 °C than 37 °C when CO2 served as the only source of carbon. In the current study, 55 mutagenized P7-EMS mutants were developed by using 100 mM and 120 mM EMS. Interestingly, using a forward genetic approach, three out of the 55 P7-EMS mutants showed a significant increase in ethanol, butyrate, and butanol production. The three P7-EMS mutants presented on average a 4.68-fold increase in concentrations of ethanol when compared to the P7-WT. Butyric acid production from 3 P7-EMS mutants contained an average of a 3.85 fold increase over the levels observed in the P7-WT cultures under the same conditions (CO2 only). In addition, one P7-EMS mutant presented butanol production (0.23 ± 0.02 g/L), which was absent from the P7-WT under CO2 conditions. Most of the P7-EMS mutants showed stability of the obtained end product traits after three transfers. Most importantly, the amount of reduced atmospheric CO2 increased up to 8.72 times (0.21 g/Abs) for ethanol production and up to 8.73 times higher (0.16 g/Abs) for butyrate than the levels contained in the P7-WT. Additionally, to produce butanol, the P7-EMSIII-J mutant presented 0.082 g/Abs of CO2 reduction. This study demonstrated the feasibility and effectiveness of employing EMS mutagenesis in generating solvent-producing anaerobic bacteria mutants with improved and novel product formation and increased atmospheric CO2 reduction efficiency.

13.
Front Microbiol ; 11: 536535, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33329414

RESUMO

The microbial ecology of the deep biosphere is difficult to characterize, owing in part to sampling challenges and poorly understood response mechanisms to environmental change. Pre-drilled wells, including oil wells or boreholes, offer convenient access, but sampling is frequently limited to the water alone, which may provide only a partial view of the native diversity. Mineral heterogeneity demonstrably affects colonization by deep biosphere microorganisms, but the connections between the mineral-associated and planktonic communities remain unclear. To understand the substrate effects on microbial colonization and the community response to changes in organic carbon, we conducted an 18-month series of in situ experiments in a warm (57°C), anoxic, fractured carbonate aquifer at 752 m depth using replicate open, screened cartridges containing different solid substrates, with a proteinaceous organic matter perturbation halfway through this series. Samples from these cartridges were analyzed microscopically and by Illumina (iTag) 16S rRNA gene libraries to characterize changes in mineralogy and the diversity of the colonizing microbial community. The substrate-attached and planktonic communities were significantly different in our data, with some taxa (e.g., Candidate Division KB-1) rare or undetectable in the first fraction and abundant in the other. The substrate-attached community composition also varied significantly with mineralogy, such as with two Rhodocyclaceae OTUs, one of which was abundant on carbonate minerals and the other on silicic substrates. Secondary sulfide mineral formation, including iron sulfide framboids, was observed on two sets of incubated carbonates. Notably, microorganisms were attached to the framboids, which were correlated with abundant Sulfurovum and Desulfotomaculum sp. sequences in our analysis. Upon organic matter perturbation, mineral-associated microbial diversity differences were temporarily masked by the dominance of putative heterotrophic taxa in all samples, including OTUs identified as Caulobacter, Methyloversatilis, and Pseudomonas. Subsequent experimental deployments included a methanogen-dominated stage (Methanobacteriales and Methanomicrobiales) 6 months after the perturbation and a return to an assemblage similar to the pre-perturbation community after 9 months. Substrate-associated community differences were again significant within these subsequent phases, however, demonstrating the value of in situ time course experiments to capture a fraction of the microbial assemblage that is frequently difficult to observe in pre-drilled wells.

14.
Appl Environ Microbiol ; 75(7): 1820-5, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19201977

RESUMO

The iron-sulfur nitroso compound [Fe(4)S(3)(NO)(7)](-) is a broad-spectrum antimicrobial agent that has been used for more than 100 years to combat pathogenic anaerobes. Known as Roussin's black salt (RBS), it contains seven moles of nitric oxide, the release of which was always assumed to mediate its cytotoxicity. Using the hyperthermophilic archaeon Pyrococcus furiosus, it is demonstrated through growth studies, membrane analyses, and scanning electron microscopy that nitric oxide does not play a role in RBS toxicity; rather, the mechanism involves membrane disruption leading to cell lysis. Moreover, insoluble elemental sulfur (S(0)), which is reduced by P. furiosus to hydrogen sulfide, prevents cell lysis by RBS. It is proposed that S(0) also directly interacts with the membranes of P. furiosus during its transfer into the cell, ultimately for reduction by a cytosolic NADPH sulfur reductase. RBS is proposed to be a new class of inorganic antimicrobial agent that also has potential use as an inert cell-lysing agent.


Assuntos
Desinfetantes/farmacologia , Compostos de Ferro/farmacologia , Compostos Nitrosos/farmacologia , Pyrococcus furiosus/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/ultraestrutura , Sulfeto de Hidrogênio/metabolismo , Microscopia Eletrônica de Varredura , Pyrococcus furiosus/crescimento & desenvolvimento , Pyrococcus furiosus/ultraestrutura , Enxofre/metabolismo
15.
Appl Environ Microbiol ; 75(14): 4762-9, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19465524

RESUMO

Very few cultivated microorganisms can degrade lignocellulosic biomass without chemical pretreatment. We show here that "Anaerocellum thermophilum" DSM 6725, an anaerobic bacterium that grows optimally at 75 degrees C, efficiently utilizes various types of untreated plant biomass, as well as crystalline cellulose and xylan. These include hardwoods such as poplar, low-lignin grasses such as napier and Bermuda grasses, and high-lignin grasses such as switchgrass. The organism did not utilize only the soluble fraction of the untreated biomass, since insoluble plant biomass (as well as cellulose and xylan) obtained after washing at 75 degrees C for 18 h also served as a growth substrate. The predominant end products from all growth substrates were hydrogen, acetate, and lactate. Glucose and cellobiose (on crystalline cellulose) and xylose and xylobiose (on xylan) also accumulated in the growth media during growth on the defined substrates but not during growth on the plant biomass. A. thermophilum DSM 6725 grew well on first- and second-spent biomass derived from poplar and switchgrass, where spent biomass is defined as the insoluble growth substrate recovered after the organism has reached late stationary phase. No evidence was found for the direct attachment of A. thermophilum DSM 6725 to the plant biomass. This organism differs from the closely related strain A. thermophilum Z-1320 in its ability to grow on xylose and pectin. Caldicellulosiruptor saccharolyticus DSM 8903 (optimum growth temperature, 70 degrees C), a close relative of A. thermophilum DSM 6725, grew well on switchgrass but not on poplar, indicating a significant difference in the biomass-degrading abilities of these two otherwise very similar organisms.


Assuntos
Biomassa , Bactérias Gram-Positivas/metabolismo , Lignina/metabolismo , Plantas/metabolismo , Plantas/microbiologia , Ácido Acético/metabolismo , Anaerobiose , Celulose/metabolismo , Contagem de Colônia Microbiana , Bactérias Gram-Positivas/crescimento & desenvolvimento , Temperatura Alta , Hidrogênio/metabolismo , Ácido Láctico/metabolismo , Xilanos/metabolismo
16.
Front Microbiol ; 10: 2224, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31611860

RESUMO

Deep fractured rock ecosystems across most of North America have not been studied extensively. However, the US Great Basin, in particular the Nevada National Security Site (NNSS, formerly the Nevada Test Site), has hosted a number of influential subsurface investigations over the years. This investigation focuses on resident microbiota recovered from a hydrogeologically confined aquifer in fractured Paleozoic carbonate rocks at 863 - 923 meters below land surface. Analysis of the microorganisms living in this oligotrophic environment provides a perspective into microbial metabolic strategies required to endure prolonged hydrogeological isolation deep underground. Here we present a microbiological and physicochemical characterization of a deep continental carbonate ecosystem and describe a bacterial genus isolated from the ecosystem. Strain DRI-13T is a strictly anaerobic, moderately thermophilic, fumarate-respiring member of the phylum Firmicutes. This bacterium grows optimally at 55°C and pH 8.0, can tolerate a concentration of 100 mM NaCl, and appears to obligately metabolize fumarate to acetate and succinate. Culture-independent 16S rRNA gene sequencing indicates a global subsurface distribution, while the closest cultured relatives of DRI-13T are Pelotomaculum thermopropionicum (90.0% similarity) and Desulfotomaculum gibsoniae (88.0% similarity). The predominant fatty acid profile is iso-C15 : 0, C15 : 0, C16 : 0 and C14 : 0. The percentage of the straight-chain fatty acid C15 : 0 is a defining characteristic not present in the other closely related species. The genome is estimated to be 3,649,665 bp, composed of 87.3% coding regions with an overall average of 45.1% G + C content. Strain DRI-13T represents a novel genus of subsurface bacterium isolated from a previously uncharacterized rock-hosted geothermal habitat. The characterization of the bacterium combined with the sequenced genome provides insights into metabolism strategies of the deep subsurface biosphere. Based on our characterization analysis we propose the name Thermoanaerosceptrum fracticalcis (DRI-13T = DSM 100382T = ATCC TSD-12T).

18.
PLoS One ; 13(3): e0194404, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29543879

RESUMO

Devils Hole is the sole natural habitat of the critically endangered Devils Hole pupfish (Cyprinodon diabolis). To establish a backup population, the Ash Meadows Fish Conservation Facility (AMFCF), a full-scale replica of the uppermost 6.7 m of Devils Hole, was constructed by management agencies in the mid-2010s. Despite rigorous efforts to mimic the bathymetric and physical details of the Devils Hole environment, the biogeochemistry and microbiology of the AMFCF refuge tank remain largely unaddressed. We evaluated water physicochemistry and employed Illumina DNA sequencing of 16S rRNA gene libraries to evaluate planktonic and benthic bacterial and archaeal community composition within their respective physicochemical contexts in Devils Hole and AMFCF on the same day. Major ion concentrations were consistent between the two systems, but water temperature and dissolved oxygen dynamics differed. Bioavailable nitrogen (primarily nitrate) was 5x lower in AMFCF. Devils Hole and AMFCF nitrogen:phosphorus molar ratios were 107:1 and 22:1, indicative of different nutrient control mechanisms. Both sites are microbiologically diverse, with over 40 prokaryotic phyla represented at each, with 37 shared between them and nearly than half deriving from candidate divisions. The abundance and composition of predicted photosynthetic primary producers (Cyanobacteria) was markedly different between sites: Devils Hole planktonic and sediment communities were dominated by Oscillatoria spp. (13.2% mean relative abundance), which proved virtually undetectable in AMFCF. Conversely, AMFCF was dominated by a predicted heterotroph from the Verrucomicrobiaceae family (31.7%); which was comparatively rare (<2.4%) in Devils Hole. We propose that the paucity of bioavailable nitrogen in AMFCF, perhaps resulting from physical isolation from allochthonous environmental inputs, is reflected in the microbial assemblage disparity, influences biogeochemical cycling of other dissolved constituents, and may ultimately impact survivorship and recruitment of refuge populations of the Devils Hole pupfish.


Assuntos
Archaea/genética , Bactérias/genética , Cavernas , Conservação dos Recursos Naturais , Peixes Listrados/crescimento & desenvolvimento , Animais , Archaea/classificação , Bactérias/classificação , Fenômenos Químicos , Ecossistema , Espécies em Perigo de Extinção , Variação Genética , Geografia , Sedimentos Geológicos/química , Água Subterrânea/química , Nevada , Filogenia , Plâncton/classificação , RNA Ribossômico 16S/genética
19.
PLoS One ; 13(3): e0194223, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29522562

RESUMO

Chewed and expectorated quids, indigestible stringy fibers from the roasted inner pulp of agave or yucca root, have proven resilient over long periods of time in dry cave environments and correspondingly, although little studied, are common in archaeological archives. In the late 1960s, thousands of quids were recovered from Mule Spring Rockshelter (Nevada, USA) deposits and stored without consideration to DNA preservation in a museum collection, remaining unstudied for over fifty years. To assess the utility of these materials as repositories for genetic information about past inhabitants of the region and their movements, twenty-one quids were selected from arbitrary excavation depths for detailed analysis. Human mitochondrial DNA sequences from the quids were amplified by PCR and screened for diagnostic single nucleotide polymorphisms. Most detected single nucleotide polymorphisms were consistent with recognized Native American haplogroup subclades B2a5, B2i1, C1, C1c, C1c2, and D1; with the majority of the sample set consistent with subclades C1, C1c, and C1c2. In parallel with the DNA analysis, each quid was radiocarbon dated, revealing a time-resolved pattern of occupancy from 347 to 977 calibrated years before present. In particular, this dataset reveals strong evidence for the presence of haplogroup C1/C1c at the Southwestern edge of the US Great Basin from ~670 to 980 cal YBP, which may temporally correspond with the beginnings of the so-called Numic Spread into the region. The research described here demonstrates an approach which combines targeted DNA analysis with radiocarbon age dating; thus enabling the genetic analysis of archaeological materials of uncertain stratigraphic context. Here we present a survey of the maternal genetic profiles from people who used the Mule Spring Rockshelter and the historic timing of their utilization of a key natural resource.


Assuntos
Radioisótopos de Carbono , DNA Antigo , DNA Mitocondrial , Datação Radiométrica , Arqueologia , Evolução Molecular , Variação Genética , Humanos , Nevada , Dinâmica Populacional , Análise de Sequência de DNA
20.
Biotechnol Biofuels ; 7(1): 165, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25506391

RESUMO

BACKGROUND: Chemical and physical pretreatment of lignocellulosic biomass improves substrate reactivity for increased microbial biofuel production, but also restricts growth via the release of furan aldehydes, such as furfural and 5-hydroxymethylfurfural (5-HMF). The physiological effects of these inhibitors on thermophilic, fermentative bacteria are important to understand; especially as cellulolytic strains are being developed for consolidated bioprocessing (CBP) of lignocellulosic feedstocks. Identifying mechanisms for detoxification of aldehydes in naturally resistant strains, such as Thermoanaerobacter spp., may also enable improvements in candidate CBP microorganisms. RESULTS: Thermoanaerobacter pseudethanolicus 39E, an anaerobic, saccharolytic thermophile, was found to grow readily in the presence of 30 mM furfural and 20 mM 5-HMF and reduce these aldehydes to their respective alcohols in situ. The proteomes of T. pseudethanolicus 39E grown in the presence or absence of 15 mM furfural were compared to identify upregulated enzymes potentially responsible for the observed reduction. A total of 225 proteins were differentially regulated in response to the 15 mM furfural treatment with 152 upregulated versus 73 downregulated. Only 87 proteins exhibited a twofold or greater change in abundance in either direction. Of these, 54 were upregulated in the presence of furfural and 33 were downregulated. Two oxidoreductases were upregulated at least twofold by furfural and were targeted for further investigation. Teth39_1597 encodes a predicted butanol dehydrogenase (BdhA) and Teth39_1598, a predicted aldo/keto reductase (AKR). Both genes were cloned from T. pseudethanolicus 39E, with the respective enzymes overexpressed in E. coli and specific activities determined against a variety of aldehydes. Overexpressed BdhA showed significant activity with all aldehydes tested, including furfural and 5-HMF, using NADPH as the cofactor. Cell extracts with AKR also showed activity with NADPH, but only with four-carbon butyraldehyde and isobutyraldehyde. CONCLUSIONS: T. pseudethanolicus 39E displays intrinsic tolerance to the common pretreatment inhibitors furfural and 5-HMF. Multidimensional proteomic analysis was used as an effective tool to identify putative mechanisms for detoxification of furfural and 5-HMF. T. pseudethanolicus was found to upregulate an NADPH-dependent alcohol dehydrogenase 6.8-fold in response to furfural. In vitro enzyme assays confirmed the reduction of furfural and 5-HMF to their respective alcohols.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA