Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
FASEB J ; 36(5): e22271, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35344211

RESUMO

The vagus nerve can, via the alpha 7 nicotinic acetylcholine receptor (α7nAChR), regulate inflammation. The gene coding for the α7nAChR, CHRNA7, can be partially duplicated, that is, CHRFAM7A, which is reported to impair the anti-inflammatory effect mediated via the α7nAChR. Several single nucleotide polymorphisms (SNPs) have been described in both CHRNA7 and CHRFAM7A, however, the functional role of these SNPs for immune responses remains to be investigated. In the current study, we set out to investigate whether genetic variants of CHRNA7 and CHRFAM7A can influence immune responses. By investigating data available from the Swedish SciLifeLab SCAPIS Wellness Profiling (S3WP) study, in combination with droplet digital PCR and freshly isolated PBMCs from the S3WP participants, challenged with lipopolysaccharide (LPS), we show that CHRNA7 and CHRFAM7A are expressed in human PBMCs, with approximately four times higher expression of CHRFAM7A compared with CHRNA7. One SNP in CHRFAM7A, rs34007223, is positively associated with hsCRP in healthy individuals. Furthermore, gene ontology (GO)-terms analysis of plasma proteins associated with gene expression of CHRNA7 and CHRFAM7A demonstrated an involvement for these genes in immune responses. This was further supported by in vitro data showing that several SNPs in both CHRNA7 and CHRFAM7A are significantly associated with cytokine response. In conclusion, genetic variants of CHRNA7 and CHRFAM7A alters cytokine responses. Furthermore, given that CHRFAM7A SNP rs34007223 is associated with inflammatory marker hsCRP in healthy individuals suggests that CHRFAM7A may have a more pronounced role in regulating inflammatory processes in humans than previously been recognized.


Assuntos
Receptores Nicotínicos , Receptor Nicotínico de Acetilcolina alfa7 , Proteína C-Reativa/metabolismo , Citocinas/metabolismo , Humanos , Leucócitos/metabolismo , Polimorfismo de Nucleotídeo Único , Receptores Nicotínicos/genética , Receptor Nicotínico de Acetilcolina alfa7/genética , Receptor Nicotínico de Acetilcolina alfa7/metabolismo
2.
FASEB J ; 36(9): e22512, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36001064

RESUMO

The kinase IKKß controls pro-inflammatory gene expression, and its activity in the liver and leukocytes was shown to drive metabolic inflammation and insulin resistance in obesity. However, it was also proposed that liver IKKß signaling protects obese mice from insulin resistance and endoplasmic reticulum (ER) stress by increasing XBP1s protein stability. Furthermore, mice lacking IKKß in leukocytes display increased lethality to lipopolysaccharides. This study aims at improving our understanding of the role of IKKß signaling in obesity. We induced IKKß deletion in hematopoietic cells and liver of obese mice by Cre-LoxP recombination, using an INF-inducible system, or a liver-specific IKKß deletion in obese mice by adenovirus delivery of the Cre recombinase. The histopathological, immune, and metabolic phenotype of the mice was characterized. IKKß deletion in the liver and hematopoietic cells was not tolerated in mice with established obesity exposed to the TLR3 agonist poly(I:C) and exacerbated liver damage and ER-stress despite elevated XBP1s. By contrast, liver-specific ablation of IKKß in obese mice reduced steatosis and improved insulin sensitivity in association with increased XBP1s protein abundance and reduced expression of de-novo lipogenesis genes. We conclude that IKKß blockage in liver and leukocytes is not tolerated in obese mice exposed to TLR3 agonists. However, selective hepatic IKKß ablation improves fatty liver and insulin sensitivity in association with increased XBP1s protein abundance and reduced expression of lipogenic genes.


Assuntos
Fígado Gorduroso , Resistência à Insulina , Animais , Fígado Gorduroso/metabolismo , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , Leucócitos/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/metabolismo , Receptor 3 Toll-Like/metabolismo
3.
Biomedicines ; 10(8)2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-36009570

RESUMO

Inflammation plays a central role in the development of neonatal brain injury. The alpha 7 nicotinic acetylcholine receptor (α7nAChR) can modulate inflammation and has shown promising results as a treatment target in rodent models of adult brain injury. However, little is known about the role of the α7nAChR in neonatal brain injury. Hypoxic-ischemic (HI) brain injury was induced in male and female C57BL/6 mice, α7nAChR knock-out (KO) mice and their littermate controls on postnatal day (PND) 9-10. C57BL/6 pups received i.p. injections of α7nAChR agonist PHA 568487 (8 mg/kg) or saline once daily, with the first dose given directly after HI. Caspase-3 activity and cytokine mRNA expression in the brain was analyzed 24 h after HI. Motor function was assessed 24 and 48 h after HI, and immunohistochemistry was used to assess tissue loss at 24 h and 7 days after HI and microglial activation 7 days after HI. Activation of α7nAChR with the agonist PHA 568487 significantly decreased CCL2/MCP-1, CCL5/RANTES and IL-6 gene expression in the injured brain hemisphere 24 h after HI compared with saline controls in male, but not female, pups. However, α7nAChR activation did not alter caspase-3 activity and TNFα, IL-1ß and CD68 mRNA expression. Furthermore, agonist treatment did not affect motor function (24 or 48 h), neuronal tissue loss (24 h or 7 days) or microglia activation (7 days) after HI in either sex. Knock-out of α7nAChR did not influence neuronal tissue loss 7 days after HI. In conclusion, targeting the α7nAChR in neonatal brain injury shows some effect on dampening acute inflammatory responses in male pups. However, this does not lead to an effect on overall injury outcome.

4.
Psychoneuroendocrinology ; 126: 105143, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33493754

RESUMO

Overconsumption of food is a major health concern in the western world. Palatable food has been shown to alter the activity of neural circuits, and obesity has been linked to alterations in the connectivity between the hypothalamus and cortical regions involved in decision-making and reward processing, putatively modulating the incentive value of food. Outlining neurophysiological adaptations induced by dietary intake of high fat diets (HFD) is thus valuable to establish how the diet by itself may promote overeating. To this end, C57BL/6 mice were fed HFD rich in either saturated fatty acids (HFD-S) or polyunsaturated fatty acids (HFD-P), or a low-fat control diet (LFD) for four weeks. Food and energy intake were monitored and ex vivo electrophysiology was employed to assess neuroadaptations in lateral hypothalamus (LH) and corticostriatal circuits, previously associated with food intake. In addition, the effects of dietary saturated and polyunsaturated fatty acids on the gene expression of NMDA, AMPA and GABAA receptor subunits in the hypothalamus were investigated. Our data shows that mice fed HFD-P had increased daily food and energy intake compared with mice fed HFD-S or LFD. However, this increase in energy intake had no obesogenic effects. Electrophysiological recordings demonstrated that HFD-P had a selective effect on glutamatergic neurotransmission in the LH, which was concomitant with a change in mRNA expression of AMPA receptor subtypes Gria1, Gria3 and Gria4, with no effect on the mRNA expression of NMDA receptor subtypes or GABAA receptor subtypes. Furthermore, while synaptic output from corticostriatal subregions was not significantly modulated by diet, synaptic plasticity in the form of long-term depression (LTD) was impaired in the dorsomedial striatum of mice fed HFD-S. In conclusion, this study suggests that the composition of fatty acids in the diet not only affects weight gain, but may also modulate neuronal function and plasticity in brain regions involved in food intake.


Assuntos
Dieta Hiperlipídica , Ácidos Graxos , Aumento de Peso , Animais , Ácidos Graxos Insaturados , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro , Receptores de GABA-A
5.
Biosci Rep ; 41(6)2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34008839

RESUMO

Inflammation plays a central role in stroke-induced brain injury. The alpha7 nicotinic acetylcholine receptor (α7nAChR) can modulate immune responses in both the periphery and the brain. The aims of the present study were to investigate α7nAChR expression in different brain regions and evaluate the potential effect of the selective α7nAChR agonist AR-R17779 on ischemia-reperfusion brain injury in mice. Droplet digital PCR (ddPCR) was used to evaluate the absolute expression of the gene encoding α7nAChR (Chrna7) in hippocampus, striatum, thalamus and cortex in adult, naïve mice. Mice subjected to transient middle cerebral artery occlusion (tMCAO) or sham surgery were treated with α7nAChR agonist AR-R17779 (12 mg/kg) or saline once daily for 5 days. Infarct size and microglial activation 7 days after tMCAO were analyzed using immunohistochemistry. Chrna7 expression was found in all analyzed brain regions in naïve mice with the highest expression in cortex and hippocampus. At sacrifice, white blood cell count was significantly decreased in AR-R17779 treated mice compared with saline controls in the sham groups, although, no effect was seen in the tMCAO groups. Brain injury and microglial activation were evident 7 days after tMCAO. However, no difference was found between mice treated with saline or AR-R17779. In conclusion, α7nAChR expression varies in different brain regions and, despite a decrease in white blood cells in sham mice receiving AR-R17779, this compound does not affect stroke-induced brain injury.


Assuntos
Encéfalo/efeitos dos fármacos , Hidrocarbonetos Aromáticos com Pontes/farmacologia , Infarto da Artéria Cerebral Média/tratamento farmacológico , AVC Isquêmico/tratamento farmacológico , Agonistas Nicotínicos/farmacologia , Traumatismo por Reperfusão/prevenção & controle , Compostos de Espiro/farmacologia , Receptor Nicotínico de Acetilcolina alfa7/agonistas , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/patologia , AVC Isquêmico/metabolismo , AVC Isquêmico/patologia , Masculino , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Transdução de Sinais , Receptor Nicotínico de Acetilcolina alfa7/genética , Receptor Nicotínico de Acetilcolina alfa7/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA