Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Phylogenet Evol ; 127: 387-404, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29709692

RESUMO

Seed harvesting ants are ecosystem engineers that shape vegetation, nutrient cycles, and microclimate. Progress in ecological research is, however, slowed down by poor species delimitation. For example, it has not been resolved to date, how many species the European harvester ant Messor "structor" (Latreille, 1798) represents. Since its first description, splitting into additional taxa was often proposed but not accepted later on due to inconsistent support from morphology and ecology. Here, we took an iterative integrative-taxonomy approach - comparing multiple, independent data sets of the same sample - and used traditional morphometrics, Wolbachia symbionts, mitochondrial DNA, amplified fragment length polymorphism, and ecological niche modelling. Using the complementarity of the data sets applied, we resolved multiple, strong disagreements over the number of species, ranging from four to ten, and the allocation of individuals to species. We consider most plausible a five-species hypothesis and conclude the taxonomic odyssey by redescribing Messor structor, M. ibericus Santschi, 1925, and M. muticus (Nylander, 1849) stat.rev., and by describing two new species, M. ponticus sp.n. and M. mcarthuri sp.n. The evolutionary explanations invoked in resolving the various data conflicts include pronounced morphological crypsis, incomplete lineage-sorting or ongoing cospeciation of endosymbionts, and peripatric speciation - these ants' significance to evolutionary biology parallels that to ecology. The successful solution of this particular problem illustrates the usefulness of the integrative approach to other systematic problems of comparable complexity and the importance of understanding evolution to drawing correct conclusions on species' attributes, including their ecology and biogeography.


Assuntos
Formigas/classificação , Evolução Biológica , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Animais , Formigas/anatomia & histologia , Formigas/genética , Formigas/microbiologia , DNA Mitocondrial/genética , Análise Discriminante , Ecossistema , Feminino , Masculino , Modelos Teóricos , Filogenia , Análise de Componente Principal , Especificidade da Espécie , Terminologia como Assunto , Wolbachia/fisiologia
2.
Adipocyte ; 8(1): 178-189, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31033380

RESUMO

Adipose stromal/progenitor cells (ASCs) can differentiate into adipocytes in the course of adipogenesis. This process is governed by systemic factors and signals of the adipose stem cell niche. ASCs isolated from fat tissues and amplified in vitro provide an essential and reliable model system to study adipogenesis. However, current cell culture models routinely grow ASCs on plastic surfaces largely missing niche parameters. In the present communication, we employed human foreskin fibroblasts (HFFs) monolayers as feeder cells for ASCs, which were isolated from human subcutaneous white adipose tissue and amplified in vitro. We found that PPARγ2 and several adipocyte markers were significantly higher expressed in differentiated ASCs growing on feeder layers relative to plastic dishes. Moreover, a significant higher number of adipocytes was generated from ASCs cultured on feeder layer and these adipocytes contained larger fat droplets. Insulin strongly stimulated glucose uptake into adipocytes produced on feeder layer suggesting that these cells show characteristic metabolic features of fat cells.  Finally, we show that the HFF feeder layer allows adipogenic differentiation of low-density-seeded ASCs. In conclusion, we demonstrate that the HFF feeder layer increases adipocyte differentiation of ASCs and allows differentiation of low density seeded progenitor cells  into functional adipocytes.


Assuntos
Adipogenia , Tecido Adiposo/citologia , Células Alimentadoras/metabolismo , Fibroblastos/metabolismo , Prepúcio do Pênis/citologia , Células-Tronco Mesenquimais/citologia , Adulto , Técnicas de Cocultura/métodos , Meios de Cultivo Condicionados/farmacologia , Feminino , Humanos , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Pessoa de Meia-Idade
3.
Stem Cell Res ; 22: 1-12, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28549249

RESUMO

To precisely characterize CD146 in adipose stromal/progenitor cells (ASCs) we sorted the stromal vascular faction (SVF) of human abdominal subcutaneous white adipose tissue (sWAT) according to cell surface (cs) expression of CD146, DLK1 and CD34. This test identified three main SVF cell populations: ~50% cs-DLK1-/cs-CD34+/cs-CD146- ASCs, ~7.5% cs-DLK1+/cs-CD34dim/+/cs-CD146+ and ~7.5% cs-DLK1+/cs-CD34dim/+/cs-CD146- cells. All cells contained intracellular CD146. Whole mount fluorescent IHC staining of small vessels detected CD146+ endothelial cells (CD31+/CD34+/CD146+) and pericytes (CD31-/CD34-/CD146+ ASCs). The cells in the outer adventitial layer showed the typical ASC morphology, were strongly CD34+ and contained low amounts of intracellular CD146 protein (CD31-/CD34+/CD146+). Additionally, we detected wavy CD34-/CD146+ and CD34dim/CD146+ cells. CD34dim/CD146+ cells were slightly more bulky than CD34-/CD146+ cells. Both CD34-/CD146+ and CD34dim/CD146+ cells were detached from the inner pericyte layer and protruded into the outer adventitial layer. Cultured early passage ASCs contained low levels of CD146 mRNA, which was expressed in two different splicing variants, at a relatively high amount of the CD146-long form and at a relatively low amount of the CD146-short form. ASCs contained low levels of CD146 protein, which consisted predominantly long form and a small amount of short form. The CD146 protein was highly stable, and the majority of the protein was localized in the Golgi apparatus. In conclusion, the present study contributes to a better understanding of the spatial localization of CD34+/CD146+ and CD34-/CD146+ cells in the adipose niche of sWAT and identifies CD146 as intracellular protein in cs-DLK1-/cs-CD34+/cs-CD146- ASCs.


Assuntos
Adipócitos/metabolismo , Antígeno CD146/biossíntese , Células Estromais/metabolismo , Adipócitos/citologia , Antígenos CD34/biossíntese , Antígenos CD34/genética , Antígeno CD146/genética , Proteínas de Ligação ao Cálcio , Diferenciação Celular/fisiologia , Células Cultivadas , Citometria de Fluxo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/biossíntese , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteínas de Membrana/biossíntese , Proteínas de Membrana/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Células Estromais/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA