Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 620(7973): 292-298, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37257843

RESUMO

Close-in giant exoplanets with temperatures greater than 2,000 K ('ultra-hot Jupiters') have been the subject of extensive efforts to determine their atmospheric properties using thermal emission measurements from the Hubble Space Telescope (HST) and Spitzer Space Telescope1-3. However, previous studies have yielded inconsistent results because the small sizes of the spectral features and the limited information content of the data resulted in high sensitivity to the varying assumptions made in the treatment of instrument systematics and the atmospheric retrieval analysis3-12. Here we present a dayside thermal emission spectrum of the ultra-hot Jupiter WASP-18b obtained with the NIRISS13 instrument on the JWST. The data span 0.85 to 2.85 µm in wavelength at an average resolving power of 400 and exhibit minimal systematics. The spectrum shows three water emission features (at >6σ confidence) and evidence for optical opacity, possibly attributable to H-, TiO and VO (combined significance of 3.8σ). Models that fit the data require a thermal inversion, molecular dissociation as predicted by chemical equilibrium, a solar heavy-element abundance ('metallicity', [Formula: see text] times solar) and a carbon-to-oxygen (C/O) ratio less than unity. The data also yield a dayside brightness temperature map, which shows a peak in temperature near the substellar point that decreases steeply and symmetrically with longitude towards the terminators.

2.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33753500

RESUMO

Tidally locked exoplanets likely host global atmospheric circulations with a superrotating equatorial jet, planetary-scale stationary waves, and thermally driven overturning circulation. In this work, we show that each of these features can be separated from the total circulation by using a Helmholtz decomposition, which splits the circulation into rotational (divergence-free) and divergent (vorticity-free) components. This technique is applied to the simulated circulation of a terrestrial planet and a gaseous hot Jupiter. For both planets, the rotational component comprises the equatorial jet and stationary waves, and the divergent component contains the overturning circulation. Separating out each component allows us to evaluate their spatial structure and relative contribution to the total flow. In contrast with previous work, we show that divergent velocities are not negligible when compared with rotational velocities and that divergent, overturning circulation takes the form of a single, roughly isotropic cell that ascends on the day side and descends on the night side. These conclusions are drawn for both the terrestrial case and the hot Jupiter. To illustrate the utility of the Helmholtz decomposition for studying atmospheric processes, we compute the contribution of each of the circulation components to heat transport from day side to night side. Surprisingly, we find that the divergent circulation dominates day-night heat transport in the terrestrial case and accounts for around half of the heat transport for the hot Jupiter. The relative contributions of the rotational and divergent components to day-night heat transport are likely sensitive to multiple planetary parameters and atmospheric processes and merit further study.

3.
Am J Bot ; 109(11): 1741-1756, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36371717

RESUMO

PREMISE: Anthropogenic nitrogen (N) addition alters the abiotic and biotic environment, potentially leading to changes in patterns of natural selection (i.e., trait-fitness relationships) and the opportunity for selection (i.e., variance in relative fitness). Because N addition favors species with light acquisition strategies (e.g., tall species), we predicted that N would strengthen selection favoring those same traits. We also predicted that N could alter the opportunity for selection via its effects on mean fitness and/or competitive asymmetries. METHODS: We quantified the strength of selection and the opportunity for selection in replicated populations of the annual grass Setaria faberi (giant foxtail) growing in a long-term N addition experiment. We also correlated these population-level parameters with community-level metrics to identify the proximate causes of N-mediated evolutionary effects. RESULTS: N addition increased aboveground productivity, light asymmetry, and reduced species diversity. Contrary to expectations, N addition did not strengthen selection for trait values associated with higher light acquisition such as greater height and specific leaf area (SLA); rather, it strengthened selection favoring lower SLA. Light asymmetry and species diversity were associated with selection for height and SLA, suggesting a role for these factors in driving N-mediated selection. The opportunity for selection was not influenced by N addition but was negatively associated with species diversity. CONCLUSIONS: Our results indicate that anthropogenic N enrichment can affect evolutionary processes, but that evolutionary changes in plant traits within populations are unlikely to parallel the shifts in plant traits observed at the community level.


Assuntos
Nitrogênio , Folhas de Planta , Folhas de Planta/fisiologia , Evolução Biológica , Poaceae , Plantas
4.
Oecologia ; 200(1-2): 133-143, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36125524

RESUMO

Because genotypes within a species commonly differ in traits that influence other species, whole communities, or even ecosystem functions, evolutionary change within one key species may affect the community and ecosystem processes. Here we use experimental mesocosms to test how the evolution of reduced cooperation in rhizobium mutualists in response to 20 years of nitrogen fertilization compares to the effects of rhizobium presence on soil nitrogen availability and plant community composition and diversity. The evolution of reduced rhizobium cooperation caused reductions in soil nitrogen, biological nitrogen fixation, and leaf nitrogen concentrations that were as strong as, or even stronger than, experimental rhizobium inoculation (presence/absence) treatments. Effects of both rhizobium evolution and rhizobium inoculation on legume dominance, plant community composition, and plant species diversity were often smaller in magnitude, but suggest that rhizobium evolution can alter the relative abundance of plant functional groups. Our findings indicate that the consequences of rapid microbial evolution for ecosystems and communities can rival the effects resulting from the presence or abundance of keystone mutualists.


Assuntos
Fabaceae , Rhizobium , Ecossistema , Fabaceae/fisiologia , Nitrogênio , Plantas , Rhizobium/fisiologia , Solo , Simbiose/fisiologia
5.
AAPS PharmSciTech ; 15(5): 1126-37, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24871551

RESUMO

Compendial methods determining dry powder inhaler (DPI)-emitted aerosol aerodynamic particle size distribution (APSD) collect a 4-L air sample containing the aerosol bolus, where the flow, which propagates through the cascade impactor (CI) measurement system from the vacuum source, is used to actuate the inhaler. A previous article described outcomes with two CIs (Andersen eight-stage cascade impactor (ACI) and Next-Generation Pharmaceutical Impactor (NGI)) when the air sample volume was ≤4 L with moderate-resistance DPIs. This article extends that work, examining the hypothesis that DPI flow resistance may be a factor in determining outcomes. APSD measurements were made using the same CI systems with inhalers representing low and high flow resistance extremes (Cyclohaler® and HandiHaler® DPIs, respectively). The ratio of sample volume to internal dead space (normalized volume (V*)) was varied from 0.25 to 1.98 (NGI) and from 0.43 to 3.46 (ACI). Inhaler resistance was a contributing factor to the rate of bolus transfer; the higher resistance DPI completing bolus relocation to the NGI pre-separator via the inlet when V* was as small as 0.25, whereas only ca. 50% of the bolus mass was collected at this condition with the Cyclohaler® DPI. Size fractionation of the bolus from either DPI was completed within the ACI at smaller values of V* than within the NGI. Bolus transfer from the Cyclohaler® capsule and from the HandiHaler® to the ACI system were unaffected by the different flow rise time observed in the two different flow controller systems, and the effects the ACI-based on APSD measurements were marginal.


Assuntos
Aerossóis , Inaladores de Pó Seco , Desenho de Equipamento , Tamanho da Partícula
6.
Ecology ; : e4441, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39363508

RESUMO

Anthropogenic climate warming affects plant communities by changing community structure and function. Studies on climate warming have primarily focused on individual effects of warming, but the interactive effects of warming with biotic factors could be at least as important in community responses to climate change. In addition, climate change experiments spanning multiple years are necessary to capture interannual variability and detect the influence of these effects within ecological communities. Our study explores the individual and interactive effects of warming and insect herbivory on plant traits and community responses within a 7-year warming and herbivory manipulation experiment in two early successional plant communities in Michigan, USA. We find stronger support for the individual effects of both warming and herbivory on multiple plant morphological and phenological traits; only the timing of plant green-up and seed set demonstrated an interactive effect between warming and herbivory. With herbivory, warming advanced green-up, but with reduced herbivory, there was no significant effect of warming. In contrast, warming increased plant biomass, but the effect of warming on biomass did not depend upon the level of insect herbivores. We found that these treatments had stronger effects in some years than others, highlighting the need for multiyear experiments. This study demonstrates that warming and herbivory can have strong direct effects on plant communities, but that their interactive effects are limited in these early successional systems. Because the strength and direction of these effects can vary by ecological context, it is still advisable to include levels of biotic interactions, multiple traits and years, and community type when studying climate change effects on plants and their communities.

7.
Nat Astron ; 8(7): 879-898, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39049827

RESUMO

Hot Jupiters are among the best-studied exoplanets, but it is still poorly understood how their chemical composition and cloud properties vary with longitude. Theoretical models predict that clouds may condense on the nightside and that molecular abundances can be driven out of equilibrium by zonal winds. Here we report a phase-resolved emission spectrum of the hot Jupiter WASP-43b measured from 5 µm to 12 µm with the JWST's Mid-Infrared Instrument. The spectra reveal a large day-night temperature contrast (with average brightness temperatures of 1,524 ± 35 K and 863 ± 23 K, respectively) and evidence for water absorption at all orbital phases. Comparisons with three-dimensional atmospheric models show that both the phase-curve shape and emission spectra strongly suggest the presence of nightside clouds that become optically thick to thermal emission at pressures greater than ~100 mbar. The dayside is consistent with a cloudless atmosphere above the mid-infrared photosphere. Contrary to expectations from equilibrium chemistry but consistent with disequilibrium kinetics models, methane is not detected on the nightside (2σ upper limit of 1-6 ppm, depending on model assumptions). Our results provide strong evidence that the atmosphere of WASP-43b is shaped by disequilibrium processes and provide new insights into the properties of the planet's nightside clouds. However, the remaining discrepancies between our observations and our predictive atmospheric models emphasize the importance of further exploring the effects of clouds and disequilibrium chemistry in numerical models.

8.
BMC Neurosci ; 14: 38, 2013 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-23530974

RESUMO

BACKGROUND: Cortical cultures grown long-term on multi-electrode arrays (MEAs) are frequently and extensively used as models of cortical networks in studies of neuronal firing activity, neuropharmacology, toxicology and mechanisms underlying synaptic plasticity. However, in contrast to the predominantly asynchronous neuronal firing activity exhibited by intact cortex, electrophysiological activity of mature cortical cultures is dominated by spontaneous epileptiform-like global burst events which hinders their effective use in network-level studies, particularly for neurally-controlled animat ('artificial animal') applications. Thus, the identification of culture features that can be exploited to produce neuronal activity more representative of that seen in vivo could increase the utility and relevance of studies that employ these preparations. Acetylcholine has a recognised neuromodulatory role affecting excitability, rhythmicity, plasticity and information flow in vivo although its endogenous production by cortical cultures and subsequent functional influence upon neuronal excitability remains unknown. RESULTS: Consequently, using MEA electrophysiological recording supported by immunohistochemical and RT-qPCR methods, we demonstrate for the first time, the presence of intrinsic cholinergic neurons and significant, endogenous cholinergic tone in cortical cultures with a characterisation of the muscarinic and nicotinic components that underlie modulation of spontaneous neuronal activity. We found that tonic muscarinic ACh receptor (mAChR) activation affects global excitability and burst event regularity in a culture age-dependent manner whilst, in contrast, tonic nicotinic ACh receptor (nAChR) activation can modulate burst duration and the proportion of spikes occurring within bursts in a spatio-temporal fashion. CONCLUSIONS: We suggest that the presence of significant endogenous cholinergic tone in cortical cultures and the comparability of its modulatory effects to those seen in intact brain tissues support emerging, exploitable commonalities between in vivo and in vitro preparations. We conclude that experimental manipulation of endogenous cholinergic tone could offer a novel opportunity to improve the use of cortical cultures for studies of network-level mechanisms in a manner that remains largely consistent with its functional role.


Assuntos
Potenciais de Ação/fisiologia , Córtex Cerebral/citologia , Córtex Cerebral/fisiologia , Colinérgicos/metabolismo , Potenciais Evocados/fisiologia , Neurônios/fisiologia , Acetilcolina/metabolismo , Animais , Colinérgicos/farmacologia , Eletrodos , Embrião de Mamíferos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/fisiologia , Técnicas de Cultura de Órgãos , Técnicas de Patch-Clamp , Gravidez , Ratos , Ratos Endogâmicos WKY , Receptor trkA/metabolismo , Receptores Muscarínicos/metabolismo , Processamento de Sinais Assistido por Computador , Fatores de Tempo
9.
New Phytol ; 197(4): 1321-1331, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23311994

RESUMO

To gain an understanding of the genetic basis of adaptation, we conducted quantitative trait locus (QTL) mapping for flowering time variation between two winter annual populations of Arabidopsis thaliana that are locally adapted and display distinct flowering times. QTL mapping was performed with large (n = 384) F(2) populations with and without vernalization, in order to reveal both the genetic basis of a vernalization requirement and that of variation in flowering time given vernalization. In the nonvernalization treatment, none of the Sweden parents flowered, whereas all of the Italy parents and 42% of the F(2)s flowered. We identified three QTLs for flowering without vernalization, with much of the variation being attributed to a QTL co-localizing with FLOWERING LOCUS C (FLC). In the vernalization treatment, all parents and F(2)s flowered, and six QTLs of small to moderate effect were revealed, with underlying candidate genes that are members of the vernalization pathway. We found no evidence for a role of FRIGIDA in the regulation of flowering times. These results contribute to a growing body of evidence aimed at the identification of ecologically relevant genetic variation for flowering time in Arabidopsis, and set the stage for functional studies to determine the link between flowering time loci and fitness.


Assuntos
Adaptação Fisiológica , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Mapeamento Cromossômico , Flores/genética , Flores/crescimento & desenvolvimento , Flores/fisiologia , Genes de Plantas , Fenótipo , Dinâmica Populacional , Locos de Características Quantitativas , Fatores de Tempo
10.
PLoS Comput Biol ; 8(5): e1002522, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22615555

RESUMO

The functional networks of cultured neurons exhibit complex network properties similar to those found in vivo. Starting from random seeding, cultures undergo significant reorganization during the initial period in vitro, yet despite providing an ideal platform for observing developmental changes in neuronal connectivity, little is known about how a complex functional network evolves from isolated neurons. In the present study, evolution of functional connectivity was estimated from correlations of spontaneous activity. Network properties were quantified using complex measures from graph theory and used to compare cultures at different stages of development during the first 5 weeks in vitro. Networks obtained from young cultures (14 days in vitro) exhibited a random topology, which evolved to a small-world topology during maturation. The topology change was accompanied by an increased presence of highly connected areas (hubs) and network efficiency increased with age. The small-world topology balances integration of network areas with segregation of specialized processing units. The emergence of such network structure in cultured neurons, despite a lack of external input, points to complex intrinsic biological mechanisms. Moreover, the functional network of cultures at mature ages is efficient and highly suited to complex processing tasks.


Assuntos
Potenciais de Ação/fisiologia , Modelos Neurológicos , Modelos Estatísticos , Rede Nervosa/fisiologia , Neurogênese/fisiologia , Neurônios/fisiologia , Animais , Proliferação de Células , Células Cultivadas , Simulação por Computador , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA