Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Biosens Bioelectron ; 237: 115479, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37459685

RESUMO

Monitoring astronauts' health during space missions poses many challenges, including rapid assessment of crew health conditions. Sensitive genetic diagnostics are crucial for examining crew members and the spacecraft environment. CRISPR-Cas12a, coupled with isothermal amplification, has proven to be a promising biosensing system for rapid, on-site detection of genomic targets. However, the efficiency and sensitivity of CRISPR-based diagnostics have never been tested in microgravity. We tested the use of recombinase polymerase amplification (RPA) coupled with the collateral cleavage activity of Cas12a for genetic diagnostics onboard the International Space Station. We explored the detection sensitivity of amplified and unamplified target DNA. By coupling RPA with Cas12a, we identified targets in attomolar concentrations. We further assessed the reactions' stability following long-term storage. Our results demonstrate that CRISPR-based detection is a powerful tool for on-site genetic diagnostics in microgravity, and can be further utilized for long-term space endeavors to improve astronauts' health and well-being.


Assuntos
Técnicas Biossensoriais , Ausência de Peso , Humanos , Astronautas , Genômica , Recombinases , Sistemas CRISPR-Cas/genética , Técnicas de Amplificação de Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA