Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Rapid Commun Mass Spectrom ; 37(9): e9495, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36799074

RESUMO

RATIONALE: This paper describes an in vitro study designed to identify metabolic biomarkers resulting from the conjugation of nitrogen mustards (NMs) with glutathione (GSH). The method developed is essential in providing evidence in the event of NM exposure in biomedical samples. METHODS: The mass spectral characterization of the proposed NMs-GSH conjugates was performed with liquid chromatography high-resolution tandem mass spectrometry (LC-HRMS/MS). The final reaction mixtures were analysed in positive electrospray ionisation (ESI) at different incubation times. RESULTS: This study identified three types of conjugates in addition to ethanolamines, the hydrolysis products of NMs. Monoglutathionyl, diglutathionyl and phosphorylated conjugates were produced for each of the NMs, bis(2-chloroethyl)ethylamine (HN1), bis(2-chloroethyl)methylamine (HN2) and tris(2-chloroethyl)amine (HN3). The monoglutathionyl conjugates consisted of HN1-GSH, HN2-GSH and HN3-GSH. The spontaneous and primary conjugates of diglutathionyl were HN1-GSH2, HN2-GSH2 and HN3-GSH2. These included phosphorylated conjugates, namely HN1-GSH-PO4 , HN2-GSH-PO4 and HN3-GSH-PO4 , as might have formed due to hydrolysis in phosphate buffer. CONCLUSIONS: The mass spectral data of all conjugates formed in the presence of all NMs and GSH are reported in this study. These GSH metabolites can be used to confirm NMs toxicity in biological samples such as urine.


Assuntos
Compostos de Mostarda Nitrogenada , Cromatografia Líquida/métodos , Espectrometria de Massas , Glutationa/metabolismo , Nitrogênio
2.
J Hazard Mater ; 459: 132332, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37598516

RESUMO

The formation of chlorinated organic compounds in concrete debris exposed to reactive chlorine was studied to search for markers specific to chlorine gas exposure. Concrete materials of different origins were exposed to a range of species of reactive chlorine including bleach, humid and dry chlorine gas at different concentrations. Chlorinated organic compounds in concrete extracts were analysed by targeted gas and liquid chromatography-tandem mass spectrometry (GC-MS/MS and LC-MS/MS) and by non-targeted screening using the corresponding high-resolution techniques (GC-HRMS and LC-HRMS). Overall, different levels and species of chlorinated organic compounds namely chlorophenols, chlorobenzenes, chloromethoxyphenols, chloromethylbenzenes and chloral hydrate were identified in these chlorinated concrete extracts; two examples of diagnostic markers for neat chlorine exposure were trichloromethylbenzene and tetrachlorophenol. The old concrete samples from the 1930s and 1950s had the most chlorinated organic compounds after exposure to neat chlorine gas. Lignin or lignin degradation products were identified as probable candidates for phenolic precursor molecules in the concrete samples. Multivariate data analysis (OPLS-DA) shows distinct patterns for bleach and chlorine exposure. The chlorinated chemicals and specific markers for chlorine gas discovered in our research assist other laboratories in forensic investigations of chlorine gas attacks.

3.
Artigo em Inglês | MEDLINE | ID: mdl-34052559

RESUMO

Highly polar ethanolamines (EAs), excreted in urine, are hydrolysis products of nitrogen mustards (NMs), which are prohibited by the Chemical Weapons Convention (CWC). The methods established for biological matrices are essential for verification analysis of the CWC related chemicals. This paper describes a new liquid chromatography-tandem mass spectrometry (LC-MS/MS) method developed for qualitative and quantitative analysis of EAs, N-ethyldiethanolamine (EDEA), N-methyldiethanolamine (MDEA) and triethanolamine (TEAOH) from urine samples. After optimization of sample preparation and chromatographic conditions, the method was fully validated. Silica solid-phase extraction (SPE) cartridges and a porous graphite carbon (PGC) column were selected for validation studies. The method is linear from 5 to 500, 0.5 to 250, and 0.5 to 500 ng/mL for TEAOH, EDEA, and MDEA, respectively. It is also precise and accurate. A minimum sample amount of 0.5 mL urine was used. The limit of quantification using this approach was 0.4, 5.5, and 6.3 ng/mL for MDEA, EDEA and TEAOH, respectively. The combination of the PGC column and high pH eluents in analysis retained and separated the studied EAs. Retention times were 2.11, 2.56 and 2.98 min for MDEA, EDEA and TEAOH, respectively. The method is applicable for verification analysis of the CWC.


Assuntos
Cromatografia Líquida/métodos , Etanolaminas , Compostos de Mostarda Nitrogenada , Espectrometria de Massas em Tandem/métodos , Etanolaminas/metabolismo , Etanolaminas/urina , Feminino , Humanos , Hidrólise , Modelos Lineares , Masculino , Compostos de Mostarda Nitrogenada/metabolismo , Compostos de Mostarda Nitrogenada/urina , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA