Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Bioessays ; 39(12)2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28977683

RESUMO

Phosphoinositides (PtdInsPs) modulate a plethora of functions including signal transduction and membrane trafficking. PtdInsPs are thought to consist of seven interconvertible species that localize to a specific organelle, to which they recruit a set of cognate effector proteins. Here, in reviewing the literature, we argue that this model needs revision. First, PtdInsPs can carry a variety of acyl chains, greatly boosting their molecular diversity. Second, PtdInsPs are more promiscuous in their localization than is usually acknowledged. Third, PtdInsP interconversion is likely achieved through kinase-phosphatase enzyme complexes that coordinate their activities and channel substrates without affecting bulk substrate population. Additionally, we contend that despite hundreds of PtdInsP effectors, our attention is biased toward few proteins. Lastly, we recognize that PtdInsPs can act to nucleate coincidence detection at the effector level, as in PDK1 and Akt. Overall, better integrated models of PtdInsP regulation and function are not only possible but needed.


Assuntos
1-Fosfatidilinositol 4-Quinase/genética , Células Eucarióticas/metabolismo , Membranas Intracelulares/metabolismo , Fosfatidilinositóis/metabolismo , Fosfatases de Fosfoinositídeos/genética , 1-Fosfatidilinositol 4-Quinase/metabolismo , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/genética , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/metabolismo , Acilação , Animais , Compartimento Celular , Células Eucarióticas/citologia , Regulação da Expressão Gênica , Fosfatidilinositóis/química , Fosfatidilinositóis/classificação , Fosfatases de Fosfoinositídeos/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
2.
Genes Dev ; 25(9): 984-95, 2011 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-21536737

RESUMO

Transcriptional activity of a gene is governed by transcriptional regulatory complexes that assemble/disassemble on the gene and control the chromatin architecture. How cytoplasmic components influence the assembly/disassembly of transcriptional regulatory complexes is poorly understood. Here we report that the budding yeast Saccharomyces cerevisiae has a chromatin architecture-modulating mechanism that is dependent on the endosomal lipid PI(3,5)P(2). We identified Tup1 and Cti6 as new, highly specific PI(3,5)P(2) interactors. Tup1--which associates with multiple transcriptional regulators, including the HDAC (histone deacetylase) and SAGA complexes--plays a crucial role in determining an activated or repressed chromatin state of numerous genes, including GAL1. We show that, in the context that the Gal4 activation pathway is compromised, PI(3,5)P(2) plays an essential role in converting the Tup1-driven repressed chromatin structure into a SAGA-containing activated chromatin structure at the GAL1 promoter. Biochemical and cell biological experiments suggest that PI(3,5)P(2) recruits Cti6 and the Cyc8-Tup1 corepressor complex to the late endosomal/vacuolar membrane and mediates the assembly of a Cti6-Cyc8-Tup1 coactivator complex that functions to recruit the SAGA complex to the GAL1 promoter. Our findings provide important insights toward understanding how the chromatin architecture and epigenetic status of a gene are regulated by cytoplasmic components.


Assuntos
Regulação Fúngica da Expressão Gênica , Proteínas Nucleares/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte/metabolismo , Núcleo Celular/metabolismo , Meios de Cultura , Indução Enzimática/genética , Galactoquinase/genética , Galactoquinase/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Regiões Promotoras Genéticas , Estrutura Terciária de Proteína , Transporte Proteico , Saccharomyces cerevisiae/enzimologia , Transdução de Sinais , Estresse Fisiológico , Transativadores/metabolismo
3.
J Biol Chem ; 288(28): 20633-45, 2013 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-23733183

RESUMO

Glucose/carbon metabolism is a fundamental cellular process in living cells. In response to varying environments, eukaryotic cells reprogram their glucose/carbon metabolism between aerobic or anaerobic glycolysis, oxidative phosphorylation, and/or gluconeogenesis. The distinct type of glucose/carbon metabolism that a cell carries out has significant effects on the cell's proliferation and differentiation. However, it is poorly understood how the reprogramming of glucose/carbon metabolism is regulated. Here, we report a novel endosomal PI(3,5)P2 lipid-dependent regulatory mechanism that is required for metabolic reprogramming from glycolysis to gluconeogenesis in Saccharomyces cerevisiae. Certain gluconeogenesis genes, such as FBP1 (encoding fructose-1,6-bisphosphatase 1) and ICL1 (encoding isocitrate lyase 1) are under control of the Mig1 repressor and Cyc8-Tup1 corepressor complex. We previously identified the PI(3,5)P2-dependent Tup1 conversion (PIPTC), a mechanism to convert Cyc8-Tup1 corepressor to Cti6-Cyc8-Tup1 coactivator. We demonstrate that the PIPTC plays a critical role for transcriptional activation of FBP1 and ICL1. Furthermore, without the PIPTC, the Cat8 and Sip4 transcriptional activators cannot be efficiently recruited to the promoters of FBP1 and ICL1, suggesting a key role for the PIPTC in remodulating the chromatin architecture at the promoters. Our findings expand our understanding of the regulatory mechanisms for metabolic reprogramming in eukaryotes to include key regulation steps outside the nucleus. Given that Tup1 and the metabolic enzymes that control PI(3,5)P2 are highly conserved among eukaryotes, our findings may provide important insights toward understanding glucose/carbon metabolic reprogramming in other eukaryotes, including humans.


Assuntos
Gluconeogênese/fisiologia , Glicólise/fisiologia , Proteínas Nucleares/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Etanol/farmacologia , Frutose-Bifosfatase/genética , Frutose-Bifosfatase/metabolismo , Galactoquinase/genética , Galactoquinase/metabolismo , Regulação Fúngica da Expressão Gênica , Gluconeogênese/genética , Glucose/farmacologia , Glicólise/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Isocitrato Liase/genética , Isocitrato Liase/metabolismo , Redes e Vias Metabólicas/genética , Redes e Vias Metabólicas/fisiologia , Mutação , Proteínas Nucleares/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Transporte Proteico/efeitos dos fármacos , Proteínas Repressoras/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transativadores/genética , Transativadores/metabolismo
4.
Genetics ; 165(2): 467-76, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14573462

RESUMO

How organelle biogenesis and inheritance is linked to cell division is poorly understood. In the budding yeast Saccharomyces cerevisiae the G(1) cyclins Cln1,2,3p control initiation of cell division. Here we show that Cln3p controls vacuolar (lysosomal) biogenesis and segregation. First, loss of Cln3p, but not Cln1p or Cln2p, resulted in vacuolar fragmentation. Although the vacuoles of cln3delta cells were fragmented, together they occupied a large space, which accounted for a significant fraction of the overall cell size increase in cln3delta cells. Second, cytosol prepared from cells lacking Cln3p had reduced vacuolar homotypic fusion activity in cell-free assays. Third, vacuolar segregation was perturbed in cln3delta cells. Our findings reveal a novel role for a eukaryotic G(1) cyclin in cytoplasmic organelle biogenesis and segregation.


Assuntos
Ciclinas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Vacúolos/metabolismo , Ciclo Celular/fisiologia , Ciclinas/genética , Lipoproteínas/genética , Lipoproteínas/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Transporte Vesicular
5.
Mol Cell Biol ; 34(3): 452-63, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24277933

RESUMO

The reversible nature of protein phosphorylation dictates that any protein kinase activity must be counteracted by protein phosphatase activity. How phosphatases target specific phosphoprotein substrates and reverse the action of kinases, however, is poorly understood in a biological context. We address this question by elucidating a novel function of the conserved PP4 family phosphatase Pph3-Psy2, the yeast counterpart of the mammalian PP4c-R3 complex, in the glucose-signaling pathway. Our studies show that Pph3-Psy2 specifically targets the glucose signal transducer protein Mth1 via direct binding of the EVH1 domain of the Psy2 regulatory subunit to the polyproline motif of Mth1. This activity is required for the timely dephosphorylation of the downstream transcriptional repressor Rgt1 upon glucose withdrawal, a critical event in the repression of HXT genes, which encode glucose transporters. Pph3-Psy2 dephosphorylates Mth1, an Rgt1 associated corepressor, but does not dephosphorylate Rgt1 at sites associated with inactivation, in vitro. We show that Pph3-Psy2 phosphatase antagonizes Mth1 phosphorylation by protein kinase A (PKA), the major protein kinase activated in response to glucose, in vitro and regulates Mth1 function via putative PKA phosphorylation sites in vivo. We conclude that the Pph3-Psy2 phosphatase modulates Mth1 activity to facilitate precise regulation of HXT gene expression by glucose.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Ativação Enzimática/efeitos dos fármacos , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Glucose/farmacologia , Proteínas Facilitadoras de Transporte de Glucose/genética , Immunoblotting , Mutação , Proteínas Nucleares/genética , Fosfoproteínas Fosfatases/genética , Fosforilação/efeitos dos fármacos , Ligação Proteica , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Técnicas do Sistema de Duplo-Híbrido
6.
Genes Dev ; 19(21): 2606-18, 2005 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-16230527

RESUMO

How proliferating cells maintain the copy number and overall size of their organelles is not clear. We had previously reported that in the budding yeast Saccharomyces cerevisiae the G1 cyclin Cln3p is required for vacuolar (lysosomal) homotypic fusion and loss of Cln3p leads to vacuolar fragmentation. The Cdc42p GTPase is also required for vacuole fusion. Here we show that the scaffold protein Bem1p, a critical regulator of Cdc42p activity, is a downstream effector of Cln3p and the cyclin-dependent kinase (Cdk) Cdc28p. Our results suggest that Bem1p is phosphorylated in a Cdk-dependent manner to promote vacuole fusion. Replacing Ser72 with Asp, to mimic phosphorylation at an optimal Cdk-consensus site located in the first SH3 domain of Bem1p, suppressed vacuolar fragmentation in cells lacking Cln3p. Using in vivo and in vitro assays, we found that Cln3p was unable to promote vacuole fusion in the absence of Bem1p or in the presence of a nonphosphorylatable Bem1p-Ser72Ala mutant. Furthermore, activation of Cdc42p also suppressed vacuolar fragmentation in the absence of Cln3p. Our results provide a mechanism that links cyclin-dependent kinase activity with vacuole fusion through Bem1p and the Cdc42p GTPase cycle.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Ciclinas/metabolismo , Homeostase/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Transdução de Sinais/fisiologia , Vacúolos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Substituição de Aminoácidos/genética , Proteína Quinase CDC28 de Saccharomyces cerevisiae , Ciclinas/genética , Proteínas de Saccharomyces cerevisiae/genética , Vacúolos/genética , Proteína cdc42 de Saccharomyces cerevisiae de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA