Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 381
Filtrar
1.
J Am Chem Soc ; 146(40): 27956-27963, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39317968

RESUMO

Coupling with the nitrate electroreduction reaction (NitRR), the electrosynthesis of cyclohexanone oxime (CHO, the vital feedstock in the nylon-6 industry) from cyclohexanone provides a promising alternative to the traditional energy consumption process. However, it still suffers from low efficiency because selective production of *NH2OH intermediate from NitRR under large current densities is challenging. We here report a Cu1MoOx/nitrogen-doped carbon (NC) electrocatalyst with high-density Cu-Mo dual sites for NitRR to selectively produce and stabilize *NH2OH, with the subsequent cyclohexanone oximation achieving the highest CHO Faradaic efficiency of 94.5% and a yield rate of 3.0 mol g-1 h-1 at an industrially relevant current density of 0.5 A cm-2. Furthermore, in situ characterizations evidenced that the Cu-Mo dual sites in Cu1MoOx/NC effectively inhibited hydrodeoxygenation of hydroxyl-containing intermediates of NitRR, selectively producing *NH2OH and thus achieving cyclohexanone oximation with high efficiency. This work provides a high-performance catalyst for CHO electrosynthesis from nitrogenous waste, showing promising application potential in industrial production of CHO.

2.
J Am Chem Soc ; 146(38): 26525-26533, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39257223

RESUMO

Rational regulation of the electrochemical CO2 reduction reaction (CO2RR) pathway to produce desired products is particularly interesting, yet designing economical and robust catalysts is crucial. Here, we report an antimony-modified copper (CuSb) catalyst capable of selectively producing both CO and multicarbon (C2+) products in the CO2RR. At a current density of 0.3 A/cm2, the faradaic efficiency (FE) of CO was as high as 98.2% with a potential of -0.6 V vs reversible hydrogen electrode (RHE). When the current density increased to 1.1 A/cm2 at -1.1 V vs RHE, the primary products shifted to C2+ compounds with a FE of 75.6%. Experimental and theoretical studies indicate that tuning the potential could manipulate the oxygen species on the CuSb surface, which determined the product selectivity in the CO2RR. At a more positive potential, the existence of oxygen species facilitates the potential-limiting step involving *COOH formation and reduces the adsorption of *CO intermediates, thereby promoting CO production. At a more negative potential, the localized high CO concentration coupled with the enhanced adsorption of *CO intermediates due to Sb incorporation facilitates C-C coupling and deep hydrogenation processes, resulting in an increased C2+ selectivity.

3.
J Am Chem Soc ; 146(23): 15917-15925, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38805725

RESUMO

Cu-based catalysts are optimal for the electroreduction of CO2 to generate hydrocarbon products. However, controlling product distribution remains a challenging topic. The theoretical investigations have revealed that the coordination number (CN) of Cu considerably influences the adsorption energy of *CO intermediates, thereby affecting the reaction pathway. Cu catalysts with different CNs were fabricated by reducing CuO precursors via cyclic voltammetry (Cyc-Cu), potentiostatic electrolysis (Pot-Cu), and pulsed electrolysis (Pul-Cu), respectively. High-CN Cu catalysts predominantly generate C2+ products, while low-CN Cu favors CH4 production. For instance, over the high-CN Pot-Cu, C2+ is the main product, with the Faradaic efficiency (FE) reaching 82.5% and a partial current density (j) of 514.3 mA cm-2. Conversely, the low-CN Pul(3)-Cu favors the production of CH4, achieving the highest FECH4 value of 56.7% with a jCH4 value of 234.4 mA cm-2. In situ X-ray absorption spectroscopy and Raman spectroscopy studies further confirm the different *CO adsorptions over Cu catalysts with different CN, thereby directing the reaction pathway of the CO2RR.

4.
J Am Chem Soc ; 146(15): 10934-10942, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38581437

RESUMO

Hydroxylamine (HA, NH2OH) is a critical feedstock in the production of various chemicals and materials, and its efficient and sustainable synthesis is of great importance. Electroreduction of nitrate on Cu-based catalysts has emerged as a promising approach for green ammonia (NH3) production, but the electrosynthesis of HA remains challenging due to overreduction of HA to NH3. Herein, we report the first work on ketone-mediated HA synthesis using nitrate in water. A metal-organic-framework-derived Cu catalyst was developed to catalyze the reaction. Cyclopentanone (CP) was used to capture HA in situ to form CP oxime (CP-O) with C═N bonds, which is prone to hydrolysis. HA could be released easily after electrolysis, and CP was regenerated. It was demonstrated that CP-O could be formed with an excellent Faradaic efficiency of 47.8%, a corresponding formation rate of 34.9 mg h-1 cm-2, and a remarkable carbon selectivity of >99.9%. The hydrolysis of CP-O to release HA and CP regeneration was also optimized, resulting in 96.1 mmol L-1 of HA stabilized in the solution, which was significantly higher than direct nitrate reduction. Detailed in situ characterizations, control experiments, and theoretical calculations revealed the catalyst surface reconstruction and reaction mechanism, which showed that the coexistence of Cu0 and Cu+ facilitated the protonation and reduction of *NO2 and *NH2OH desorption, leading to the enhancement for HA production.

5.
J Am Chem Soc ; 146(37): 25813-25823, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39236157

RESUMO

Electrocatalytic coupling of CO2 and NO3- to urea is a promising way to mitigate greenhouse gas emissions, reduce waste from industrial processes, and store renewable energy. However, the poor selectivity and activity limit its application due to the multistep process involving diverse reactants and reactions. Herein, we report the first work to design heterostructured Cu-Bi bimetallic catalysts for urea electrosynthesis. A high urea Faradaic efficiency (FE) of 23.5% with a production rate of 2180.3 µg h-1 mgcat-1 was achieved in H-cells, which surpassed most reported electrocatalysts in the literature. Moreover, the catalyst had a remarkable recycling stability. Experiments and density functional theory calculations demonstrated that introduction of moderate Bi induced the formation of the Bi-Cu/O-Bi/Cu2O heterostructure with abundant phase boundaries, which are beneficial for NO3-, CO2, and H2O activation and enhance C-N coupling and promote *HONCON intermediate formation. Moreover, favorable *HNCONH2 protonation and urea desorption processes were also validated, further explaining the reason for high activity and selectivity toward urea.

6.
J Am Chem Soc ; 146(14): 10084-10092, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38530325

RESUMO

Glycine is a nonessential amino acid that plays a vital role in various biological activities. However, the conventional synthesis of glycine requires sophisticated procedures or toxic feedstocks. Herein, we report an electrochemical pathway for glycine synthesis via the reductive coupling of oxalic acid and nitrate or nitrogen oxides over atomically dispersed Fe-N-C catalysts. A glycine selectivity of 70.7% is achieved over Fe-N-C-700 at -1.0 V versus RHE. Synergy between the FeN3C structure and pyrrolic nitrogen in Fe-N-C-700 facilitates the reduction of oxalic acid to glyoxylic acid, which is crucial for producing glyoxylic acid oxime and glycine, and the FeN3C structure could reduce the energy barrier of *HOOCCH2NH2 intermediate formation thus accelerating the glyoxylic acid oxime conversion to glycine. This new synthesis approach for value-added chemicals using simple carbon and nitrogen sources could provide sustainable routes for organonitrogen compound production.

7.
Acc Chem Res ; 56(24): 3558-3571, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38029298

RESUMO

ConspectusIn recent years, significant efforts have been directed toward achieving efficient and mild lignocellulosic biomass conversion into valuable chemicals and fuels, aiming to address energy and environmental concerns and realize the goal of carbon neutrality. Lignin is one of the three primary building blocks of lignocellulose and the only aromatic renewable feedstock. However, the complex and diverse nature of lignin feedstocks, characterized by their three-dimensional, highly branched polymeric structure and intricate C-O/C-C chemical bonds, results in substantial challenges. To tackle these challenges, we carried out extensive research on selectively activating and transforming chemical bonds in lignin for chemical synthesis. In this Account, we discuss our recent progress in catalytic lignin conversion.Our work is focused on two main objectives: (i) achieving precise and selective transformation of C-O/C-C bonds in lignin (and its model compounds) and (ii) fully utilizing the aromatic nuclei and side chains present in lignin to produce valuable chemicals. Lignin consists of interconnected phenylpropanoid subunits linked by interlaced C-C/C-O bonds. To unlock the full potential of lignin, we propose the concept of "the full utilization of lignin", which encompasses both the aromatic nuclei and the side chains (e.g., methoxyl and polyhydroxypropyl groups).For the conversion of aromatic nuclei, selective activation of C-O and/or C-C bonds is crucial in synthesizing targeted aromatic products. We begin with model compounds (such as anisole, phenol, guaiacol, etc.) and then transition to protolignin feedstocks. Various reaction routes are developed, including self-supported hydrogenolysis, direct Caryl-Csp3 cleavage, coupled Caryl-Csp3 cleavage and Caryl-O hydrogenolysis, and tandem selective hydrogenation and hydrolysis processes. These tailored pathways enable high-yield and sustainable production of a wide range of aromatic (and derived) products, including arenes (benzene, toluene, alkylbenzenes), phenols, ketones, and acids.In terms of side chain utilization, we have developed innovative strategies such as selective methyl transfer, coupling depolymerization-methyl shift, selective acetyl utilization, and new activation methods such as amine-assisted prefunctionalization. These strategies enable the direct synthesis of methyl-/alkyl-derived products, such as acetic acid, 4-ethyltoluene, dimethylethylamine, and amides. Additionally, aromatic residues can be transformed into chemicals or functionalized ingredients that can serve as catalysts or functional biopolymer materials. These findings highlight promising opportunities for harnessing both the aromatic nuclei and side chains of lignin in a creative manner, thereby improving the overall atom economy of lignin upgrading.Through innovative catalyst engineering and reaction route strategies, our work achieves the sustainable and efficient production of various valuable chemicals from lignin. By integrating side chains and aromatic rings, we have successfully synthesized methyl-/alkyl-derived and aromatic-derived products with high yields. The full utilization of lignin not only minimizes waste but also opens up new possibilities for generating chemical products from lignin. These novel approaches unlock the untapped potential of lignin, expand the boundaries of lignin upgrading, and enhance the efficiency and economic viability of lignin biorefining.

8.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34911765

RESUMO

Abiotic CO2 reduction on transition metal minerals has been proposed to account for the synthesis of organic compounds in alkaline hydrothermal systems, but this reaction lacks experimental support, as only short-chain hydrocarbons (

9.
Angew Chem Int Ed Engl ; 63(15): e202400033, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38225207

RESUMO

Chemical manufacturing utilizing renewable sources and energy emerges as a promising path towards sustainability and carbon neutrality. The electrocatalytic reactions involving nitrogen oxides (NOx) offered a potential strategy for synthesizing various nitrogenous chemicals. However, it is currently hindered by low selectivity/efficiency and limited reaction pathways, mainly due to the difficulties in controllable generation and utilization of nitrogenous intermediates. In this minireview, focusing on nitrogenous intermediates in NOx-involved electrocatalytic reactions, we discuss newly developed methodologies for studying and controlling the generation, conversion, and utilizing of nitrogenous intermediates, which enable recent developments in NOx-involved electrocatalytic reactions that yield various products, including ammonia (NH3), organonitrogen molecules, and nitrogenous compounds exhibiting unconventional oxidation states. Furthermore, we also make an outlook to highlight future directions in the emerging field of NOx-involved electrocatalytic reactions.

10.
Angew Chem Int Ed Engl ; 63(9): e202315822, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38081787

RESUMO

Electroreduction of CO2 into valuable chemicals and fuels is a promising strategy to mitigate energy and environmental problems. However, it usually suffers from unsatisfactory selectivity for a single product and inadequate electrochemical stability. Herein, we report the first work to use cationic Gemini surfactants as modifiers to boost CO2 electroreduction to formate. The selectivity, activity and stability of the catalysts can be all significantly enhanced by Gemini surfactant modification. The Faradaic efficiency (FE) of formate could reach up to 96 %, and the energy efficiency (EE) could achieve 71 % over the Gemini surfactants modified Cu electrode. In addition, the Gemini surfactants modified commercial Bi2 O3 nanosheets also showed an excellent catalytic performance, and the FE of formate reached 91 % with a current density of 510 mA cm-2 using the flow cell. Detailed studies demonstrated that the double quaternary ammonium cations and alkyl chains of the Gemini surfactants played a crucial role in boosting electroreduction CO2 , which can not only stabilize the key intermediate HCOO* but also provide an easy access for CO2 . These observations could shine light on the rational design of organic modifiers for promoted CO2 electroreduction.

11.
Angew Chem Int Ed Engl ; 63(33): e202409019, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-38785222

RESUMO

Urea electrosynthesis from carbon dioxide (CO2) and nitrate (NO3 -) is an alternative approach to traditional energy-intensive urea synthesis technology. Herein, we report a CuAu single-atom alloy (SAA) with electronic metal support interaction (EMSI), achieving a high urea yield rate of 813.6 µg h-1 mgcat -1 at -0.94 V versus reversible hydrogen electrode (vs. RHE) and a Faradaic efficiency (FE) of 45.2 % at -0.74 V vs. RHE. In situ experiments and theoretical calculations demonstrated that single-atom Cu sites modulate the adsorption behavior of intermediate species. Bimetallic sites synergistically accelerate C-N bond formation through spontaneous coupling of *CO and *NO to form *ONCO as key intermediates. More importantly, electronic metal support interaction between CuAu SAA and CeO2 carrier further modulates electron structure and interfacial microenvironment, endowing electrocatalysts with superior activity and durability. This work constructs SAA electrocatalysts with EMSI effect to tailor C-N coupling at the atomic level, which can provide guidance for the development of C-N coupling systems.

12.
Angew Chem Int Ed Engl ; : e202412062, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39315608

RESUMO

Developing a new route to produce aromatic amines as key chemicals from renewable phenols is a benign alternative to current fossil-based routes like nitroaromatic hydrogenation, but is challenging because of the high dissociation energy of the Ar-OH bond and difficulty in controlling side reactions. Herein, an aerosolizing-pyrolysis strategy was developed to prepare high-density single-site cationic Pd species immobilized on CeO2 (Pd1/CeO2) with excellent sintering resistance. The obtained Pd1/CeO2 catalysts achieved remarkable selectivity of important aromatic amines (yield up to 76.2%) in the phenols amination with amines without external hydrogen sources, while Pd nano-catalysts mainly afforded phenyl-ring-saturation products. The excellent catalytic properties of the Pd1/CeO2 are closely related to high-loading Pd single-site catalysts with abundant surface defect sites and suitable acid-base properties. This report provides a sustainable route for producing aromatic amines from renewable feedstocks.

13.
Angew Chem Int Ed Engl ; 63(2): e202313796, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38015565

RESUMO

Modulation of the microenvironment on the electrode surface is one of the effective means to improve the efficiency of electrocatalytic carbon dioxide reduction (eCO2 RR). To achieve high conversion rates, the phase boundary at the electrode surface should be finely controlled to overcome the limitation of CO2 solubility in the aqueous electrolyte. Herein, we developed a simple and efficient method to structure electrocatalyst with a superhydrophobic surface microenvironment by one-step co-electrodeposition of Cu and polytetrafluoroethylene (PTFE) on carbon paper. The super-hydrophobic Cu-based electrode displayed a high ethylene (C2 H4 ) selectivity with a Faraday efficiency (FE) of 67.3 % at -1.25 V vs. reversible hydrogen electrode (RHE) in an H-type cell, which is 2.5 times higher than a regular Cu electrode without PTFE. By using PTFE as a surface modifier, the activity of eCO2 RR is enhanced and water (proton) adsorption is inhibited. This strategy has the potential to be applied to other gas-conversion electrocatalysts.

14.
Angew Chem Int Ed Engl ; 63(38): e202409563, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-38949085

RESUMO

Regulating the binding effect between the surface of an electrode material and reaction intermediates is essential in highly efficient CO2 electro-reduction to produce high-value multicarbon (C2+) compounds. Theoretical study reveals that lattice tensile strain in single-component Cu catalysts can reduce the dipole-dipole repulsion between *CO intermediates and promotes *OH adsorption, and the high *CO and *OH coverage decreases the energy barrier for C-C coupling. In this work, Cu catalysts with varying lattice tensile strain were fabricated by electro-reducing CuO precursors with different crystallinity, without adding any extra components. The as-prepared single-component Cu catalysts were used for CO2 electro-reduction, and it is discovered that the lattice tensile strain in Cu could enhance the Faradaic efficiency (FE) of C2+ products effectively. Especially, the as-prepared CuTPA catalyst with high lattice tensile strain achieves a FEC2+ of 90.9 % at -1.25 V vs. RHE with a partial current density of 486.1 mA cm-2.

15.
Angew Chem Int Ed Engl ; : e202410972, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39115031

RESUMO

Coupling in situ generated intermediates with other substrates/intermediates is a viable approach for diversifying product outcomes of catalytic reactions involving two or multiple reactants. Cyclohexanone oxime is a key precursor for caprolactam synthesis (the monomer of Nylon-6), yet its current production uses unsustainable carbon sources, noble metal catalysts, and harsh conditions. Herein, we report the first work to synthesize cyclohexanone oxime through electroreduction of phenol and hydroxylamine. The Faradaic efficiency reached 69.1 % over Cu catalyst, accompanied by a corresponding cyclohexanone oxime formation rate of 82.0 g h-1 gcat -1. In addition, the conversion of phenol was up to 97.5 %. In situ characterizations, control experiments, and theoretical calculations suggested the importance of balanced activation of water, phenol, and hydroxylamine substrates on the optimal metallic Cu catalyst for achieving high-performance cyclohexanone oxime synthesis. Besides, a tandem catalytic route for the upgrading of lignin to caprolactam has been successfully developed through the integration of thermal catalysis, electrocatalysis, and Beckmann rearrangement, which achieved the synthesis of 0.40 g of caprolactam from 4.0 g of lignin raw material.

16.
Angew Chem Int Ed Engl ; 63(30): e202405733, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38719782

RESUMO

n-propanol is an important pharmaceutical and pesticide intermediate. To produce n-propanol by electrochemical reduction of CO2 is a promising way, but is largely restricted by the very low selectivity and activity. How to promote the coupling of *C1 and *C2 intermediates to form the *C3 intermediate for n-propanol formation is challenging. Here, we propose the construction of bicontinuous structure of Cu2O/Cu electrocatalyst, which consists of ultra-small Cu2O nanodomains, Cu nanodomains and large amounts of grain boundaries between Cu2O and Cu nanodomains. The n-propanol current density is as high as 101.6 mA cm-2 at the applied potential of -1.1 V vs. reversible hydrogen electrode in flow cell, with the Faradaic efficiency up to 12.1 %. Moreover, the catalyst keeps relatively stable during electrochemical CO2 reduction process. Experimental studies and theoretical calculations reveal that the bicontinuous structure of Cu2O/Cu can facilitate the *CO formation, *CO-*CO coupling and *CO-*OCCO coupling for the final generation of n-propanol.

17.
Angew Chem Int Ed Engl ; : e202410659, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39136316

RESUMO

Electroreduction of CO2 into multi-carbon (C2+) products (e.g. C2+ alcohols) offers a promising way for CO2 utilization. Use of strong alkaline electrolytes is favorable to producing C2+ products. However, CO2 can react with hydroxide to form carbonate/bicarbonate, which results in low carbon utilization efficiency and poor stability. Using acidic electrolyte is an efficient way to solve the problems, but it is a challenge to achieve high selectivity of C2+ products. Here we report that the amine modified copper nanoparticles exhibit high selectivity of C2+ products and carbon utilization at acidic condition. The Faradaic efficiency (FE) of C2+ products reach up to 81.8% at acidic media (pH=2) with a total current density of 410 mA cm-2 over n-butylamine modified Cu. Especially the FE of C2+ alcohols is 52.6%, which is higher than those reported for CO2 electroreduction at acidic condition. In addition, the single-pass carbon efficiency towards C2+ production reach up to 60%. Detailed studies demonstrate that the amine molecule on the surface of Cu cannot only enhance the formation, adsorption and coverage of *CO, but also provide a hydrophobic environment, which result in the high selectivity of C2+ alcohols at acidic condition.

18.
Angew Chem Int Ed Engl ; : e202416436, 2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-39417695

RESUMO

The pursuit of sustainable practices through the chemical recycling of polyamide wastes holds significant potential, particularly in enabling the recovery of a range of nitrogen-containing compounds. Herein, we report a novel strategy to upcycle polyamide wastes to tertiary amines with assistance of H2 in acetic acid under mild conditions (e.g., 180 ºC), which is achieved over anatase TiO2 supported Mo single atoms and Rh nanoparticles. In this protocol, the polyamide is first converted into diacetamide intermediates via acidolysis, which are subsequent hydrogenated into corresponding carboxylic acid monomers and tertiary amines in 100% selectivity. It is verified that Mo single atom and Rh nanoparticles work together to activate both amide bonds of the diacetamide intermediate, and synergistically catalyze its hydrodeoxygenation to form tertiary amine, but this catalyst is ineffective for hydrogenation of carboxylic acid. This work presents an effective way to reconstruct various polyamide wastes into tertiary amines and carboxylic acids, which may have promising application potential.

19.
Angew Chem Int Ed Engl ; 63(15): e202400439, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38345401

RESUMO

Electroreduction of CO2 to C2+ products provides a promising strategy for reaching the goal of carbon neutrality. However, achieving high selectivity of C2+ products at high current density remains a challenge. In this work, we designed and prepared a multi-sites catalyst, in which Pd was atomically dispersed in Cu (Pd-Cu). It was found that the Pd-Cu catalyst had excellent performance for producing C2+ products from CO2 electroreduction. The Faradaic efficiency (FE) of C2+ products could be maintained at approximately 80.8 %, even at a high current density of 0.8 A cm-2 for at least 20 hours. In addition, the FE of C2+ products was above 70 % at 1.4 A cm-2. Experiments and density functional theory (DFT) calculations revealed that the catalyst had three distinct catalytic sites. These three active sites allowed for efficient conversion of CO2, water dissociation, and CO conversion, ultimately leading to high yields of C2+ products.

20.
Angew Chem Int Ed Engl ; : e202413005, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39302152

RESUMO

Engineering the microenvironment of electrode surface is one of the effective means to tune the reaction pathways in CO2RR. In this work, we prepared copper nanofibers with conductive polypyrrole coating by polymerization of pyrrole using polyvinyl pyrrolidone (PVP) as template. As a result, the obtained copper nanofibers Cu/Cu2+1O/SHNC, exhibited a superhydrophobic surface, which demonstrated very high selectivity for ethanol with a Faraday efficiency (FE) of 66.5% at -1.1 V vs reversible hydrogen electrode (RHE) in flow cell. However, the catalyst Cu/Cu2+1O/NC, which was prepared under the same conditions but without PVP, possessed a hydrophobic surface and exhibited high selectivity towards ethylene at the given potentials. The mechanism for switch of reaction pathways from ethylene to ethanol in CO2RR was studied. Incorporating pyrrolidone groups into the polymer coating results in the formation of a superhydrophobic surface. This surface weakens the hydrogen bonding interaction between interfacial water molecules and facilitates the transfer of CO2, thereby enhancing the local CO2/H2O ratio. The high coverage of *CO promotes the coupling of *CO and *CHO to form C2 intermediates, and reduces the reaction energy for the formation of *CHCHOH (ethanol path) at the interface. This ensures that the reaction pathway is directed towards ethanol.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA