Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 885
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(35): e2321633121, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39172784

RESUMO

α-synuclein (α-syn) assembles into structurally distinct fibril polymorphs seen in different synucleinopathies, such as Parkinson's disease and multiple system atrophy. Targeting these unique fibril structures using chemical ligands holds diagnostic significance for different disease subtypes. However, the molecular mechanisms governing small molecules interacting with different fibril polymorphs remain unclear. Here, we investigated the interactions of small molecules belonging to four distinct scaffolds, with different α-syn fibril polymorphs. Using cryo-electron microscopy, we determined the structures of these molecules when bound to the fibrils formed by E46K mutant α-syn and compared them to those bound with wild-type α-syn fibrils. Notably, we observed that these ligands exhibit remarkable binding adaptability, as they engage distinct binding sites across different fibril polymorphs. While the molecular scaffold primarily steered the binding locations and geometries on specific sites, the conjugated functional groups further refined this adaptable binding by fine-tuning the geometries and binding sites. Overall, our finding elucidates the adaptability of small molecules binding to different fibril structures, which sheds light on the diagnostic tracer and drug developments tailored to specific pathological fibril polymorphs.


Assuntos
Amiloide , Microscopia Crioeletrônica , alfa-Sinucleína , alfa-Sinucleína/metabolismo , alfa-Sinucleína/química , Amiloide/metabolismo , Amiloide/química , Ligantes , Humanos , Sítios de Ligação , Ligação Proteica , Doença de Parkinson/metabolismo , Mutação
2.
Blood ; 144(3): 308-322, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-38657197

RESUMO

ABSTRACT: Thrombotic microangiopathy (TMA) is characterized by immunothrombosis and life-threatening organ failure but the precise underlying mechanism driving its pathogenesis remains elusive. In this study, we hypothesized that gasdermin D (GSDMD), a pore-forming protein that serves as the final downstream effector of the pyroptosis/interleukin-1ß (IL-1ß) pathway, contributes to TMA and its consequences by amplifying neutrophil maturation and subsequent necrosis. Using a murine model of focal crystalline TMA, we found that Gsdmd deficiency ameliorated immunothrombosis, acute tissue injury, and failure. Gsdmd-/- mice exhibited a decrease in mature IL-1ß, as well as in neutrophil maturation, ß2-integrin activation, and recruitment to TMA lesions, in which they formed reduced neutrophil extracellular traps in both arteries and interstitial tissue. The GSDMD inhibitor disulfiram dose-dependently suppressed human neutrophil pyroptosis in response to cholesterol crystals. Experiments with GSDMD-deficient, human-induced, pluripotent stem cell-derived neutrophils confirmed the involvement of GSDMD in neutrophil ß2-integrin activation, maturation, and pyroptosis. Both prophylactic and therapeutic administration of disulfiram protected the mice from focal TMA, acute tissue injury, and failure. Our data identified GSDMD as a key mediator of focal crystalline TMA and its consequences, including ischemic tissue infarction and organ failure. GSDMD could potentially serve as a therapeutic target for the systemic forms of TMA.


Assuntos
Gasderminas , Neutrófilos , Proteínas de Ligação a Fosfato , Microangiopatias Trombóticas , Animais , Humanos , Camundongos , Antígenos CD18/metabolismo , Antígenos CD18/genética , Modelos Animais de Doenças , Armadilhas Extracelulares/metabolismo , Armadilhas Extracelulares/imunologia , Inflamação/patologia , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/imunologia , Neutrófilos/metabolismo , Neutrófilos/patologia , Proteínas de Ligação a Fosfato/metabolismo , Proteínas de Ligação a Fosfato/genética , Piroptose , Microangiopatias Trombóticas/patologia , Microangiopatias Trombóticas/metabolismo , Microangiopatias Trombóticas/imunologia , Microangiopatias Trombóticas/etiologia
3.
Nature ; 584(7819): 120-124, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32454512

RESUMO

An outbreak of coronavirus disease 2019 (COVID-19)1-3, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)4, has spread globally. Countermeasures are needed to treat and prevent further dissemination of the virus. Here we report the isolation of two specific human monoclonal antibodies (termed CA1 and CB6) from a patient convalescing from COVID-19. CA1 and CB6 demonstrated potent SARS-CoV-2-specific neutralization activity in vitro. In addition, CB6 inhibited infection with SARS-CoV-2 in rhesus monkeys in both prophylactic and treatment settings. We also performed structural studies, which revealed that CB6 recognizes an epitope that overlaps with angiotensin-converting enzyme 2 (ACE2)-binding sites in the SARS-CoV-2 receptor-binding domain, and thereby interferes with virus-receptor interactions by both steric hindrance and direct competition for interface residues. Our results suggest that CB6 deserves further study as a candidate for translation to the clinic.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Betacoronavirus/imunologia , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Pneumonia Viral/imunologia , Pneumonia Viral/virologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia , Enzima de Conversão de Angiotensina 2 , Animais , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/farmacologia , Anticorpos Antivirais/química , Anticorpos Antivirais/farmacologia , Betacoronavirus/química , Ligação Competitiva , COVID-19 , Linhagem Celular , Chlorocebus aethiops , Cristalização , Cristalografia por Raios X , Feminino , Humanos , Técnicas In Vitro , Macaca mulatta/imunologia , Macaca mulatta/virologia , Masculino , Modelos Moleculares , Testes de Neutralização , Pandemias , Peptidil Dipeptidase A/química , Peptidil Dipeptidase A/metabolismo , Ligação Proteica/efeitos dos fármacos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores , Glicoproteína da Espícula de Coronavírus/metabolismo , Células Vero , Carga Viral/imunologia
4.
Plant Cell ; 34(3): 1038-1053, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-34919720

RESUMO

Starch is the main energy storage carbohydrate in plants and serves as an essential carbon storage molecule for plant metabolism and growth under changing environmental conditions. The TARGET of RAPAMYCIN (TOR) kinase is an evolutionarily conserved master regulator that integrates energy, nutrient, hormone, and stress signaling to regulate growth in all eukaryotes. Here, we demonstrate that TOR promotes guard cell starch degradation and induces stomatal opening in Arabidopsis thaliana. Starvation caused by plants growing under short photoperiod or low light photon irradiance, as well as inactivation of TOR, impaired guard cell starch degradation and stomatal opening. Sugar and TOR induce the accumulation of ß-AMYLASE1 (BAM1), which is responsible for starch degradation in guard cells. The plant steroid hormone brassinosteroid and transcription factor BRASSINAZOLE-RESISTANT1 play crucial roles in sugar-promoted expression of BAM1. Furthermore, sugar supply induced BAM1 accumulation, but TOR inactivation led to BAM1 degradation, and the effects of TOR inactivation on BAM1 degradation were abolished by the inhibition of autophagy and proteasome pathways or by phospho-mimicking mutation of BAM1 at serine-31. Such regulation of BAM1 activity by sugar-TOR signaling allows carbon availability to regulate guard cell starch metabolism and stomatal movement, ensuring optimal photosynthesis efficiency of plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Carbono/metabolismo , Hormônios/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Sirolimo , Amido/metabolismo , Açúcares/metabolismo
5.
Nat Chem Biol ; 19(10): 1235-1245, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37400537

RESUMO

Amyloid fibril is an important pharmaceutical target for diagnostic and therapeutic treatment of neurodegenerative diseases. However, rational design of chemical compounds that interact with amyloid fibrils is unachievable due to the lack of mechanistic understanding of the ligand-fibril interaction. Here we used cryoelectron microscopy to survey the amyloid fibril-binding mechanism of a series of compounds including classic dyes, (pre)clinical imaging tracers and newly identified binders from high-throughput screening. We obtained clear densities of several compounds in complex with an α-synuclein fibril. These structures unveil the basic mechanism of the ligand-fibril interaction, which exhibits remarkable difference from the canonical ligand-protein interaction. In addition, we discovered a druggable pocket that is also conserved in the ex vivo α-synuclein fibrils from multiple system atrophy. Collectively, these findings expand our knowledge of protein-ligand interaction in the amyloid fibril state, which will enable rational design of amyloid binders in a medicinally beneficial way.


Assuntos
Amiloide , alfa-Sinucleína , alfa-Sinucleína/química , Microscopia Crioeletrônica , Amiloide/química , Ligantes
6.
Mol Cancer ; 23(1): 82, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664722

RESUMO

Triple-negative breast cancer (TNBC) stands as the breast cancer subtype with the highest recurrence and mortality rates, with the lungs being the common site of metastasis. The pulmonary microenvironment plays a pivotal role in the colonization of disseminated tumor cells. Herein, this study highlights the crucial role of exosomal LAP-TGF-ß1, the principal form of exosomal TGF-ß1, in reshaping the pulmonary vascular niche, thereby facilitating TNBC lung metastasis. Although various strategies have been developed to block TGF-ß signaling and have advanced clinically, their significant side effects have limited their therapeutic application. This study demonstrates that in lung metastatic sites, LAP-TGF-ß1 within exosomes can remarkably reconfigure the pulmonary vascular niche at lower doses, bolstering the extravasation and colonization of TNBC cells in the lungs. Mechanistically, under the aegis of the acetyltransferase TIP60, a non-canonical KFERQ-like sequence in LAP-TGF-ß1 undergoes acetylation at the K304 site, promoting its interaction with HSP90A and subsequent transport into exosomes. Concurrent inhibition of both HSP90A and TIP60 significantly diminishes the exosomal burden of LAP-TGF-ß1, presenting a promising therapeutic avenue for TNBC lung metastasis. This study not only offers fresh insights into the molecular underpinnings of TNBC lung metastasis but also lays a foundation for innovative therapeutic strategies.


Assuntos
Exossomos , Neoplasias Pulmonares , Fator de Crescimento Transformador beta1 , Neoplasias de Mama Triplo Negativas , Exossomos/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Neoplasias Pulmonares/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/genética , Fator de Crescimento Transformador beta1/metabolismo , Acetilação , Animais , Feminino , Camundongos , Linhagem Celular Tumoral , Microambiente Tumoral
7.
Kidney Int ; 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39142565

RESUMO

Cholesterol crystal embolism (CCE) implies immunothrombosis, tissue necrosis, and organ failure but no specific treatments are available. As CCE involves complement activation, we speculated that inhibitors of the C5a/C5aR axis would be sufficient to attenuate the consequences of CCE like that with systemic vasculitis. Cholesterol microcrystal injection into the kidney artery of wild-type mice initiated intra-kidney immunothrombosis within a few hours followed by a sudden drop of glomerular filtration rate and ischemic kidney necrosis after 24 hours. Genetic deficiency of either C3 or C5aR prevented immunothrombosis, glomerular filtration rate drop, and ischemic necrosis at 24 hours as did preemptive treatment with inhibitors of either C5a or C5aR. Delayed C5a blockade after crystal injection still resolved crystal clots and prevented all consequences. Thus, selective blockade of C5a or C5aR is sufficient to attenuate the consequences of established CCE and prospective inhibition in high-risk patients may be clinically feasible and safe.

8.
Oncologist ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940446

RESUMO

BACKGROUNDS: There is little evidence on the safety, efficacy, and survival benefit of restarting immune checkpoint inhibitors (ICI) in patients with cancer after discontinuation due to immune-related adverse events (irAEs) or progressive disease (PD). Here, we performed a meta-analysis to elucidate the possible benefits of ICI rechallenge in patients with cancer. METHODS: Systematic searches were conducted using PubMed, Embase, and Cochrane Library databases. The objective response rate (ORR), disease control rate (DCR), progression-free survival (PFS), overall survival (OS), and incidence of irAEs were the outcomes of interest. RESULTS: Thirty-six studies involving 2026 patients were analyzed. ICI rechallenge was associated with a lower incidence of all-grade (OR, 0.05; 95%CI, 0.02-0.13, P < .05) and high-grade irAEs (OR, 0.37; 95%CI, 0.21-0.64, P < .05) when compared with initial ICI treatment. Though no significant difference was observed between rechallenge and initial treatment regarding ORR (OR, 0.69; 95%CI, 0.39-1.20, P = .29) and DCR (OR, 0.85; 95%CI, 0.51-1.40, P = 0.52), patients receiving rechallenge had improved PFS (HR, 0.56; 95%CI, 0.43-0.73, P < .05) and OS (HR, 0.55; 95%CI, 0.43-0.72, P < .05) than those who discontinued ICI therapy permanently. Subgroup analysis revealed that for patients who stopped initial ICI treatment because of irAEs, rechallenge showed similar safety and efficacy with initial treatment, while for patients who discontinued ICI treatment due to PD, rechallenge caused a significant increase in the incidence of high-grade irAEs (OR, 4.97; 95%CI, 1.98-12.5, P < .05) and a decrease in ORR (OR, 0.48; 95%CI, 0.24-0.95, P < .05). CONCLUSION: ICI rechallenge is generally an active and feasible strategy that is associated with relative safety, similar efficacy, and improved survival outcomes. Rechallenge should be considered individually with circumspection, and randomized controlled trials are required to confirm these findings.

9.
BMC Plant Biol ; 24(1): 413, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760721

RESUMO

BACKGROUND: Styrax tonkinensis (Pierre) Craib ex Hartwich faces challenges in expanding in the south provinces of Yangtze River region due to climate extremes like flood-drought abrupt alternation (FDAA) caused by global warming. Low tolerance to waterlogging and drought restricts its growth in this area. To study its antioxidant system and molecular response related to the peroxisome pathway under FDAA, we conducted experiments on two-year-old seedlings, measuring growth indexes, reactive oxygen species content, antioxidant enzyme activity, and analyzing transcriptomes under FDAA and drought (DT) conditions. RESULTS: The physiological results indicated a reduction in water content in roots, stems, and leaves under FDAA conditions. The most significant water loss, amounting to 15.53% was observed in the leaves. Also, ROS accumulation was predominantly observed in leaves rather than roots. Through transcriptome analysis, we assembled a total of 1,111,088 unigenes (with a total length of 1,111,628,179 bp). Generally, SOD1 and CAT genes in S. tonkinensis seedlings were up-regulated to scavenge ROS. Conversely, the MPV17 gene exhibited contrasting reaction with up-regulation in leaves and down-regulation in roots, leading to increased ROS accumulation in leaves. CHS and F3H were down-regulated, which did not play an essential role in scavenging ROS. Moreover, the down-regulation of PYL, CPK and CALM genes in leaves may not contribute to stomatal closure, thereby causing continuous water loss through transpiration. Whereas, the decreased root vigor during the waterlogging phase and up-regulated CPK and CALM in roots posed obstacles to water absorption by roots. Additionally, the DEGs related to energy metabolism, including LHCA and LHCB, were negatively regulated. CONCLUSIONS: The ROS generation triggered by MPV17 genes was not the main reason for the eventual mortality of the plant. Instead, plant mortality may be attributed to water loss during the waterlogging phase, decreased root water uptake capacity, and continued water loss during the subsequent drought period. This study establishes a scientific foundation for comprehending the morphological, physiological, and molecular facts of S. tonkinensis under FDAA conditions.


Assuntos
Antioxidantes , Secas , Inundações , Perfilação da Expressão Gênica , Plântula , Plântula/genética , Plântula/fisiologia , Antioxidantes/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Regulação da Expressão Gênica de Plantas , Transcriptoma , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/fisiologia
10.
Small ; : e2402263, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38716785

RESUMO

Zirconium-based metal-organic frameworks (Zr-MOFs) have emerged as one of the most studied MOFs due to the unlimited numbers of organic linkers and the varying Zr-oxo clusters. However, the synthesis of carboxylic acids, especially multitopic carboxylic acids, is always a great challenge for the discovery of new Zr-MOFs. As an alternative approach, the in situ "one-pot" strategy can address this limitation, where the generation of organic linkers from the corresponding precursors and the sequential construction of MOFs are integrated into one solvothermal condition. Herein, inspired by benzimidazole-contained compounds synthesized via reaction of aldehyde and o-phenylenediamine, tri-, tetra-, penta- and hexa-topic carboxylic acids and a series of corresponding Zr-MOFs can be prepared via the in situ "one-pot" method under the same solvothermal conditions. This strategy can be utilized not only to prepare reported Zr-MOFs constructed using benzimidazole-contained linkers, but also to rationally design, construct and realize functionalities of zirconium-pentacarboxylate frameworks guided by reticular chemistry. More importantly, in situ "one-pot" method can facilitate the discovery of new Zr-MOFs, such as zirconium-hexacarboxylate frameworks. The present study demonstrates the promising potential of benzimidazole-inspired in situ "one-pot" approach in the crystal engineering of structure- and property-specific Zr-MOFs, especially with the guidance of reticular chemistry.

11.
Small ; : e2405887, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39248647

RESUMO

Covalent organic frameworks (COFs) have emerged as one of the most studied photocatalysts owing to their adjustable structure and bandgaps. However, there is limited research on regulating the light-harvesting capabilities of acceptor building blocks in donor-acceptor (D-A) isomer COFs with different bond orientations. This investigation is crucial for elucidating the structure-property-performance relationship of COF photocatalysts. Herein, a series of D-A isostructural COFs are synthesized with different imine bond orientations using benzothiadiazole and its derivatives-based organic building units. Extended light absorption is achieved in COFs with acceptor groups that have strong electron-withdrawing capacities, although this resulted a decreased hydrogen generation efficiency. Photocatalytic experiments indicated that dialdehyde benzothiadiazole-based COFs, HIAM-0015, exhibit the highest hydrogen generation rate (17.99 mmol g-1 h-1), which is 15 times higher than its isomer. The excellent photocatalytic performance of HIAM-0015 can be attributed to its fast charge separation and migration. This work provides insights into the rational design and synthesis of D-A COFs to achieve efficient photocatalytic activity.

12.
Small ; : e2401447, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693087

RESUMO

Topological defects are widely recognized as effective active sites toward a variety of electrochemical reactions. However, the role of defect curvature is still not fully understood. Herein, carbon nanomaterials with rich topological defect sites of tunable curvature is reported. The curved defective surface is realized by controlling the high-temperature pyrolytic shrinkage process of precursors. Theoretical calculations demonstrate bending the defect sites can change the local electronic structure, promote the charge transfer to key intermediates, and lower the energy barrier for oxygen reduction reaction (ORR). Experimental results convince structural superiority of highly-curved defective sites, with a high kinetic current density of 22.5 mA cm-2 at 0.8 V versus RHE for high-curvature defective carbon (HCDC), ≈18 times that of low-curvature defective carbon (LCDC). Further raising the defect densities in HCDC leads to the dual-regulated products (HCHDC), which exhibit exceptionally outstanding ORR activity in both alkaline and acidic media (half-wave potentials: 0.88 and 0.74 V), outperforming most of the reported metal-free carbon catalysts. This work uncovers the curvature-activity relationship in carbon defect for ORR and provides new guidance to design advanced catalysts via curvature-engineering.

13.
Plant Biotechnol J ; 22(7): 1989-2006, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38412139

RESUMO

Regulation of grain size is a crucial strategy for improving the crop yield and is also a fundamental aspect of developmental biology. However, the underlying molecular mechanisms governing grain development in wheat remain largely unknown. In this study, we identified a wheat atypical basic helix-loop-helix (bHLH) transcription factor, TabHLH489, which is tightly associated with grain length through genome-wide association study and map-based cloning. Knockout of TabHLH489 and its homologous genes resulted in increased grain length and weight, whereas the overexpression led to decreased grain length and weight. TaSnRK1α1, the α-catalytic subunit of plant energy sensor SnRK1, interacted with and phosphorylated TabHLH489 to induce its degradation, thereby promoting wheat grain development. Sugar treatment induced TaSnRK1α1 protein accumulation while reducing TabHLH489 protein levels. Moreover, brassinosteroid (BR) promotes grain development by decreasing TabHLH489 expression through the transcription factor BRASSINAZOLE RESISTANT1 (BZR1). Importantly, natural variations in the promoter region of TabHLH489 affect the TaBZR1 binding ability, thereby influencing TabHLH489 expression. Taken together, our findings reveal that the TaSnRK1α1-TabHLH489 regulatory module integrates BR and sugar signalling to regulate grain length, presenting potential targets for enhancing grain size in wheat.


Assuntos
Brassinosteroides , Grão Comestível , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Triticum , Triticum/genética , Triticum/metabolismo , Triticum/crescimento & desenvolvimento , Brassinosteroides/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Grão Comestível/metabolismo , Açúcares/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Estudo de Associação Genômica Ampla
14.
J Transl Med ; 22(1): 290, 2024 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500157

RESUMO

Lipid metabolism is widely reprogrammed in tumor cells. Lipid droplet is a common organelle existing in most mammal cells, and its complex and dynamic functions in maintaining redox and metabolic balance, regulating endoplasmic reticulum stress, modulating chemoresistance, and providing essential biomolecules and ATP have been well established in tumor cells. The balance between lipid droplet formation and catabolism is critical to maintaining energy metabolism in tumor cells, while the process of energy metabolism affects various functions essential for tumor growth. The imbalance of synthesis and catabolism of fatty acids in tumor cells leads to the alteration of lipid droplet content in tumor cells. Diacylglycerol acyltransferase 1 and diacylglycerol acyltransferase 2, the enzymes that catalyze the final step of triglyceride synthesis, participate in the formation of lipid droplets in tumor cells and in the regulation of cell proliferation, migration and invasion, chemoresistance, and prognosis in tumor. Several diacylglycerol acyltransferase 1 and diacylglycerol acyltransferase 2 inhibitors have been developed over the past decade and have shown anti-tumor effects in preclinical tumor models and improvement of metabolism in clinical trials. In this review, we highlight key features of fatty acid metabolism and different paradigms of diacylglycerol acyltransferase 1 and diacylglycerol acyltransferase 2 activities on cell proliferation, migration, chemoresistance, and prognosis in tumor, with the hope that these scientific findings will have potential clinical implications.


Assuntos
Diacilglicerol O-Aciltransferase , Neoplasias , Animais , Humanos , Diacilglicerol O-Aciltransferase/genética , Diacilglicerol O-Aciltransferase/metabolismo , Triglicerídeos/metabolismo , Metabolismo dos Lipídeos , Lipogênese , Proliferação de Células , Mamíferos/metabolismo
15.
Plant Cell ; 33(9): 3004-3021, 2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34129038

RESUMO

Nitrate is both an important nutrient and a critical signaling molecule that regulates plant metabolism, growth, and development. Although several components of the nitrate signaling pathway have been identified, the molecular mechanism of nitrate signaling remains unclear. Here, we showed that the growth-related transcription factors HOMOLOG OF BRASSINOSTEROID ENHANCED EXPRESSION2 INTERACTING WITH IBH1 (HBI1) and its three closest homologs (HBIs) positively regulate nitrate signaling in Arabidopsis thaliana. HBI1 is rapidly induced by nitrate through NLP6 and NLP7, which are master regulators of nitrate signaling. Mutations in HBIs result in the reduced effects of nitrate on plant growth and ∼22% nitrate-responsive genes no longer to be regulated by nitrate. HBIs increase the expression levels of a set of antioxidant genes to reduce the accumulation of reactive oxygen species (ROS) in plants. Nitrate treatment induces the nuclear localization of NLP7, whereas such promoting effects of nitrate are significantly impaired in the hbi-q and cat2 cat3 mutants, which accumulate high levels of H2O2. These results demonstrate that HBI-mediated ROS homeostasis regulates nitrate signal transduction through modulating the nucleocytoplasmic shuttling of NLP7. Overall, our findings reveal that nitrate treatment reduces the accumulation of H2O2, and H2O2 inhibits nitrate signaling, thereby forming a feedback regulatory loop to regulate plant growth and development.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Homeostase , Nitratos/metabolismo , Espécies Reativas de Oxigênio , Transdução de Sinais , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo
16.
BMC Cancer ; 24(1): 1067, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39210288

RESUMO

BACKGROUND: The prognostic value of circulating tumor cells (CTCs) in metastatic breast cancer (MBC) has been extensively studied and verified by the CellSearch® system. Varieties of microfluidic systems have been developed to improve capture efficiency with the lack of standardization and automation. This study systematically verified the positive threshold for prognosis and its guidance value in anti-HER2 therapy based on a novel automated microfluidic system OmiCell®. METHODS: CTCs isolation, enumeration and labeling were performed using the OmiCell® system. CTCs identification and reporting were performed using the DeepSight® scanning system. RESULTS: The capture efficiency and specificity of OmiCell® system was 91.9% and 90%, respectively. Then, 65 MBC patients with known HER2 status of their metastatic tumors were enrolled. In the cohort, we detected ≥ 1 CTCs in 59 patients (90.8%, range: 1-55 CTCs, median = 6), < 8 CTCs in 45 (69.2%) and ≥ 8 CTCs in 20 (30.8%) patients at baseline. The patients with < 8 CTCs had longer PFS than ≥ 8 CTCs (median, 7 vs. 4.4 months, p = 0.028). CTC enumeration was found to be an independent prognostic factor in our cohort. Moreover, we found a weak concordance between tissue HER2 (tHER2) status and the corresponding CTCs (k = 0.16, p = 0.266). The patients with tHER2 positive and cHER2 negative had better PFS compared with patients with both tHER2 and cHER2 positive (median, 8.2 vs. 3.3 months, p = 0.022). CONCLUSIONS: This clinical study shows the prognosis value of a new threshold of CTC number and meanwhile the guidance value of cHER2 status in anti-HER2 therapy.


Assuntos
Neoplasias da Mama , Células Neoplásicas Circulantes , Receptor ErbB-2 , Humanos , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patologia , Feminino , Neoplasias da Mama/patologia , Neoplasias da Mama/sangue , Neoplasias da Mama/metabolismo , Neoplasias da Mama/mortalidade , Receptor ErbB-2/metabolismo , Prognóstico , Pessoa de Meia-Idade , Idoso , Adulto , Biomarcadores Tumorais/metabolismo , Metástase Neoplásica , Contagem de Células , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Idoso de 80 Anos ou mais , Microfluídica/métodos
17.
Mol Pharm ; 21(4): 1625-1638, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38403951

RESUMO

Cationic lipids play a pivotal role in developing novel drug delivery systems for diverse biomedical applications, owing to the success of mRNA vaccines against COVID-19 and the Phase III antitumor agent EndoTAG-1. However, the therapeutic potential of these positively charged liposomes is limited by dose-dependent toxicity. While an increased content of cationic lipids in the formulation can enhance the uptake and cytotoxicity toward tumor-associated cells, it is crucial to balance these advantages with the associated toxic side effects. In this work, we synthesized the cationic lipid HC-Y-2 and incorporated it into sialic acid (SA)-modified cationic liposomes loaded with paclitaxel to target tumor-associated immune cells efficiently. The SA-modified cationic liposomes exhibited enhanced binding affinity toward both RAW264.7 cells and 4T1 tumor cells in vitro due to the increased ratios of cationic HC-Y-2 content while effectively inhibiting 4T1 cell lung metastasis in vivo. By leveraging electrostatic forces and ligand-receptor interactions, the SA-modified cationic liposomes specifically target malignant tumor-associated immune cells such as tumor-associated macrophages (TAMs), reduce the proportion of cationic lipids in the formulation, and achieve dual objectives: high cellular uptake and potent antitumor efficacy. These findings highlight the potential advantages of this innovative approach utilizing cationic liposomes.


Assuntos
Neoplasias da Mama , Neoplasias Pulmonares , Humanos , Feminino , Lipossomos/química , Ácido N-Acetilneuramínico/química , Neoplasias da Mama/tratamento farmacológico , Vacinas contra COVID-19 , Paclitaxel/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Lipídeos , Cátions , Linhagem Celular Tumoral
18.
Nutr Cancer ; 76(2): 215-225, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38044546

RESUMO

Colon cancer (COAD) is a prevalent gastrointestinal tumor, composed of a few cancer stem cells (CSCs). High expression of RNF183 drives colorectal cancer metastasis, but its role in COAD cell stemness is still unclear. Bioinformatics analyzed expression and enriched pathway of RNF183 in COAD tissue. IHC analyzed RNF183 protein expression in tumor tissue. CD133 + CD44+ CSCs were sorted by flow cytometry, and RNF183 expression in COAD cells or CSCs was detected by qPCR, western blot and immunofluorescence. CCK-8 assay assessed cell viability, and sphere formation assay tested cell sphere-forming ability. Western blot measured protein expression of stem cell markers. qPCR assayed expression of fatty acid oxidation genes. The ability of fatty acid oxidation was analyzed by detecting fatty acid metabolism. RNF183 was highly expressed in COAD and CD133 + CD44+ CSCs, and was enriched in fatty acid metabolism pathway. RNF183 expression was positively correlated with enzymes involved in fatty acid oxidation. RNF183 could promote COAD stemness and fatty acid oxidation. Rescue experiments showed that Orlistat (a fatty acid oxidation inhibitor) reversed stimulative impact of RNF183 overexpression on COAD stemness. RNF183 promoted COAD stemness by affecting fatty acid oxidation, which may be a new therapeutic target for inhibiting COAD development.


Assuntos
Neoplasias do Colo , Humanos , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias do Colo/patologia , Movimento Celular , Ácidos Graxos/metabolismo , Células-Tronco Neoplásicas/patologia , Regulação Neoplásica da Expressão Gênica , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
19.
PLoS Comput Biol ; 19(5): e1009616, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37186588

RESUMO

In complex natural environments, sensory systems are constantly exposed to a large stream of inputs. Novel or rare stimuli, which are often associated with behaviorally important events, are typically processed differently than the steady sensory background, which has less relevance. Neural signatures of such differential processing, commonly referred to as novelty detection, have been identified on the level of EEG recordings as mismatch negativity (MMN) and on the level of single neurons as stimulus-specific adaptation (SSA). Here, we propose a multi-scale recurrent network with synaptic depression to explain how novelty detection can arise in the whisker-related part of the somatosensory thalamocortical loop. The "minimalistic" architecture and dynamics of the model presume that neurons in cortical layer 6 adapt, via synaptic depression, specifically to a frequently presented stimulus, resulting in reduced population activity in the corresponding cortical column when compared with the population activity evoked by a rare stimulus. This difference in population activity is then projected from the cortex to the thalamus and amplified through the interaction between neurons of the primary and reticular nuclei of the thalamus, resulting in rhythmic oscillations. These differentially activated thalamic oscillations are forwarded to cortical layer 4 as a late secondary response that is specific to rare stimuli that violate a particular stimulus pattern. Model results show a strong analogy between this late single neuron activity and EEG-based mismatch negativity in terms of their common sensitivity to presentation context and timescales of response latency, as observed experimentally. Our results indicate that adaptation in L6 can establish the thalamocortical dynamics that produce signatures of SSA and MMN and suggest a mechanistic model of novelty detection that could generalize to other sensory modalities.


Assuntos
Neurônios , Tálamo , Neurônios/fisiologia , Tálamo/fisiologia , Córtex Somatossensorial/fisiologia
20.
Arterioscler Thromb Vasc Biol ; 43(8): 1494-1509, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37381987

RESUMO

BACKGROUND: MAGT1 (magnesium transporter 1) is a subunit of the oligosaccharide protein complex with thiol-disulfide oxidoreductase activity, supporting the process of N-glycosylation. MAGT1 deficiency was detected in human patients with X-linked immunodeficiency with magnesium defect syndrome and congenital disorders of glycosylation, resulting in decreased cation responses in lymphocytes, thereby inhibiting the immune response against viral infections. Curative hematopoietic stem cell transplantation of patients with X-linked immunodeficiency with magnesium defect causes fatal bleeding and thrombotic complications. METHODS: We studied the role of MAGT1 deficiency in platelet function in relation to arterial thrombosis and hemostasis using several in vitro experimental settings and in vivo models of arterial thrombosis and transient middle cerebral artery occlusion model of ischemic stroke. RESULTS: MAGT1-deficient mice (Magt1-/y) displayed accelerated occlusive arterial thrombus formation in vivo, a shortened bleeding time, and profound brain damage upon focal cerebral ischemia. These defects resulted in increased calcium influx and enhanced second wave mediator release, which further reinforced platelet reactivity and aggregation responses. Supplementation of MgCl2 or pharmacological blockade of TRPC6 (transient receptor potential cation channel, subfamily C, member 6) channel, but not inhibition of store-operated calcium entry, normalized the aggregation responses of Magt1-/y platelets to the control level. GP (glycoprotein) VI activation of Magt1-/y platelets resulted in hyperphosphorylation of Syk (spleen tyrosine kinase), LAT (linker for activation of T cells), and PLC (phospholipase C) γ2, whereas the inhibitory loop regulated by PKC (protein kinase C) was impaired. A hyperaggregation response to the GPVI agonist was confirmed in human platelets isolated from a MAGT1-deficient (X-linked immunodeficiency with magnesium defect) patient. Haploinsufficiency of TRPC6 in Magt1-/y mice could normalize GPVI signaling, platelet aggregation, and thrombus formation in vivo. CONCLUSIONS: These results suggest that MAGT1 and TRPC6 are functionally linked. Therefore, deficiency or impaired functionality of MAGT1 could be a potential risk factor for arterial thrombosis and stroke.


Assuntos
Proteínas de Transporte de Cátions , Homeostase , Infarto da Artéria Cerebral Média , AVC Isquêmico , Trombose , Animais , Humanos , Camundongos , Plaquetas/metabolismo , Cálcio/metabolismo , Cátions/metabolismo , AVC Isquêmico/genética , AVC Isquêmico/complicações , AVC Isquêmico/metabolismo , Magnésio/metabolismo , Ativação Plaquetária , Agregação Plaquetária , Glicoproteínas da Membrana de Plaquetas/metabolismo , Trombose/genética , Trombose/metabolismo , Canal de Cátion TRPC6/metabolismo , Proteínas de Transporte de Cátions/deficiência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA