Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38819305

RESUMO

Potassium (K+) plays crucial roles in both plant development and immunity. However, the function of K+ in plant-virus interactions remains largely unknown. Here, we utilized Barley yellow striate mosaic virus (BYSMV), an insect-transmitted plant cytorhabdovirus, to investigate the interplay between viral infection and plant K+ homeostasis. The BYSMV accessory P9 protein exhibits viroporin activity by enhancing membrane permeability in Escherichia coli. Additionally, P9 increases K+ uptake in yeast (Saccharomyces cerevisiae) cells, which is disrupted by a point mutation of Glycine 14 to Threonine (P9G14T). Furthermore, BYSMV P9 forms oligomers and targets to both the viral envelope and the plant membrane. Based on the recombinant BYSMV-green fluorescent protein (BYGFP) virus, a P9-deleted mutant (BYGFPΔP9) was rescued and demonstrated infectivity within individual plant cells of Nicotiana benthamiana and insect vectors. However, BYGFPΔP9 failed to infect barley plants after transmission by insect vectors. Furthermore, infection of barley plants was severely impaired for BYGFP-P9G14T lacking P9 K+ channel activity. In vitro assays demonstrate that K+ facilitates virion disassembly and the release of genome RNA for viral mRNA transcription. Altogether, our results show that the K+ channel activity of viroporins is conserved in plant cytorhabdoviruses and plays crucial roles in insect-mediated virus transmission.

2.
EMBO J ; 41(13): e110060, 2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35642376

RESUMO

Viral replication and movement are intimately linked; however, the molecular mechanisms regulating the transition between replication and subsequent movement remain largely unknown. We previously demonstrated that the Barley stripe mosaic virus (BSMV) γb protein promotes viral replication and movement by interacting with the αa replicase and TGB1 movement proteins. Here, we found that γb is palmitoylated at Cys-10, Cys-19, and Cys-60 in Nicotiana benthamiana, which supports BSMV infection. Intriguingly, non-palmitoylated γb is anchored to chloroplast replication sites and enhances BSMV replication, whereas palmitoylated γb protein recruits TGB1 to the chloroplasts and forms viral replication-movement intermediate complexes. At the late stages of replication, γb interacts with NbPAT15 and NbPAT21 and is palmitoylated at the chloroplast periphery, thereby shifting viral replication to intracellular and intercellular movement. We also show that palmitoylated γb promotes virus cell-to-cell movement by interacting with NbREM1 to inhibit callose deposition at the plasmodesmata. Altogether, our experiments reveal a model whereby palmitoylation of γb directs a dynamic switch between BSMV replication and movement events during infection.


Assuntos
Lipoilação , Vírus de Plantas , Nicotiana/metabolismo , Proteínas não Estruturais Virais/metabolismo , Replicação Viral
3.
EMBO J ; 40(16): e107660, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34254679

RESUMO

The plant antioxidant system plays important roles in response to diverse abiotic and biotic stresses. However, the effects of virus infection on host redox homeostasis and how antioxidant defense pathway is manipulated by viruses remain poorly understood. We previously demonstrated that the Barley stripe mosaic virus (BSMV) γb protein is recruited to the chloroplast by the viral αa replicase to enhance viral replication. Here, we show that BSMV infection induces chloroplast oxidative stress. The versatile γb protein interacts directly with NADPH-dependent thioredoxin reductase C (NTRC), a core component of chloroplast antioxidant systems. Overexpression of NbNTRC significantly impairs BSMV replication in Nicotiana benthamiana plants, whereas disruption of NbNTRC expression leads to increased viral accumulation and infection severity. To counter NTRC-mediated defenses, BSMV employs the γb protein to competitively interfere with NbNTRC binding to 2-Cys Prx. Altogether, this study indicates that beyond acting as a helicase enhancer, γb also subverts NTRC-mediated chloroplast antioxidant defenses to create an oxidative microenvironment conducive to viral replication.


Assuntos
Cloroplastos/metabolismo , Interações Hospedeiro-Patógeno , Nicotiana/virologia , Vírus de Plantas/fisiologia , Proteínas não Estruturais Virais/fisiologia , Replicação Viral , Estresse Oxidativo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Vírus de Plantas/genética , Plantas Geneticamente Modificadas/virologia , Tiorredoxina Dissulfeto Redutase/genética , Tiorredoxina Dissulfeto Redutase/metabolismo , Nicotiana/genética
4.
EMBO J ; 40(15): e108050, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34155657

RESUMO

Selective autophagy mediates specific degradation of unwanted cytoplasmic components to maintain cellular homeostasis. The suppressor of gene silencing 3 (SGS3) and RNA-dependent RNA polymerase 6 (RDR6)-formed bodies (SGS3/RDR6 bodies) are essential for siRNA amplification in planta. However, whether autophagy receptors regulate selective turnover of SGS3/RDR6 bodies is unknown. By analyzing the transcriptomic response to virus infection in Arabidopsis, we identified a virus-induced small peptide 1 (VISP1) composed of 71 amino acids, which harbor a ubiquitin-interacting motif that mediates interaction with autophagy-related protein 8. Overexpression of VISP1 induced selective autophagy and compromised antiviral immunity by inhibiting SGS3/RDR6-dependent viral siRNA amplification, whereas visp1 mutants exhibited opposite effects. Biochemistry assays demonstrate that VISP1 interacted with SGS3 and mediated autophagic degradation of SGS3/RDR6 bodies. Further analyses revealed that overexpression of VISP1, mimicking the sgs3 mutant, impaired biogenesis of endogenous trans-acting siRNAs and up-regulated their targets. Collectively, we propose that VISP1 is a small peptide receptor functioning in the crosstalk between selective autophagy and RNA silencing.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/imunologia , Peptídeos/genética , RNA Polimerase Dependente de RNA/metabolismo , Arabidopsis/metabolismo , Arabidopsis/virologia , Proteínas de Arabidopsis/genética , Autofagossomos/fisiologia , Autofagia/fisiologia , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Regulação da Expressão Gênica de Plantas , Mutação , Peptídeos/metabolismo , Imunidade Vegetal , Plantas Geneticamente Modificadas , RNA Interferente Pequeno , RNA Polimerase Dependente de RNA/genética , Nicotiana/genética
5.
Plant Physiol ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38917205

RESUMO

Plant virus-derived vectors are rapid and cost-effective for protein expression and gene functional studies in plants, particularly for species that are difficult to genetically transform. However, few efficient viral vectors are available for functional studies in Asteraceae plants. Here, we identified a potyvirus named zinnia mild mottle virus (ZiMMV) from common zinnia (Zinnia elegans Jacq.) through next-generation sequencing. Using a yeast homologous recombination strategy, we established a full-length infectious cDNA clone of ZiMMV under the control of the cauliflower mosaic virus 35S promoter. Furthermore, we developed an efficient expression vector based on ZiMMV for the persistent and abundant expression of foreign proteins in the leaf, stem, root, and flower tissues with mild symptoms during viral infection in common zinnia. We showed that the ZiMMV-based vector can express ZeMYB9, which encodes a transcript factor inducing dark red speckles in leaves and flowers. Additionally, the expression of a gibberellic acid (GA) biosynthesis gene from the ZiMMV vector substantially accelerated plant height growth, offering a rapid and cost-effective method. In summary, our work provides a powerful tool for gene expression, functional studies, and genetic improvement of horticultural traits in Asteraceae plant hosts.

6.
Plant J ; 116(6): 1717-1736, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37751381

RESUMO

Wheat yellow mosaic virus (WYMV) causes severe wheat viral disease in Asia. However, the viral suppressor of RNA silencing (VSR) encoded by WYMV has not been identified. Here, the P1 protein encoded by WYMV RNA2 was shown to suppress RNA silencing in Nicotiana benthamiana. Mutagenesis assays revealed that the alanine substitution mutant G175A of P1 abolished VSR activity and mutant Y10A VSR activity remained only in younger leaves. P1, but not G175A, interacted with gene silencing-related protein, N. benthamiana calmodulin-like protein (NbCaM), and calmodulin-binding transcription activator 3 (NbCAMTA3), and Y10A interacted with NbCAMTA3 only. Competitive Bimolecular fluorescence complementation and co-immunoprecipitation assays showed that the ability of P1 disturbing the interaction between NbCaM and NbCAMTA3 was stronger than Y10A, Y10A was stronger than G175A. In vitro transcript inoculation of infectious WYMV clones further demonstrated that VSR-defective mutants G175A and Y10A reduced WYMV infection in wheat (Triticum aestivum L.), G175A had a more significant effect on virus accumulation in upper leaves of wheat than Y10A. Moreover, RNA silencing, temperature, and autophagy have significant effects on the accumulation of P1 in N. benthamiana. Taken together, WYMV P1 acts as VSR by interfering with calmodulin-associated antiviral RNAi defense to facilitate virus infection in wheat, which has provided clear insights into the function of P1 in the process of WYMV infection.


Assuntos
Vírus do Mosaico , Viroses , Interferência de RNA , Triticum/genética , Calmodulina/genética , Viroses/genética , Vírus do Mosaico/genética , Doenças das Plantas/genética
7.
J Integr Plant Biol ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38695653

RESUMO

Vicinal oxygen chelate (VOC) proteins are members of an enzyme superfamily with dioxygenase or non-dioxygenase activities. However, the biological functions of VOC proteins in plants are poorly understood. Here, we show that a VOC in Nicotiana benthamiana (NbVOC1) facilitates viral infection. NbVOC1 was significantly induced by infection by beet necrotic yellow vein virus (BNYVV). Transient overexpression of NbVOC1 or its homolog from Beta vulgaris (BvVOC1) enhanced BNYVV infection in N. benthamiana, which required the nuclear localization of VOC1. Consistent with this result, overexpressing NbVOC1 facilitated BNYVV infection, whereas, knockdown and knockout of NbVOC1 inhibited BNYVV infection in transgenic N. benthamiana plants. NbVOC1 interacts with the basic leucine zipper transcription factors bZIP17/28, which enhances their self-interaction and DNA binding to the promoters of unfolded protein response (UPR)-related genes. We propose that bZIP17/28 directly binds to the NbVOC1 promoter and induces its transcription, forming a positive feedback loop to induce the UPR and facilitating BNYVV infection. Collectively, our results demonstrate that NbVOC1 positively regulates the UPR that enhances viral infection in plants.

8.
Plant Physiol ; 189(3): 1715-1727, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35325212

RESUMO

Salicylic acid (SA) acts as a signaling molecule to perceive and defend against pathogen infections. Accordingly, pathogens evolve versatile strategies to disrupt the SA-mediated signal transduction, and how plant viruses manipulate the SA-dependent defense responses requires further characterization. Here, we show that barley stripe mosaic virus (BSMV) infection activates the SA-mediated defense signaling pathway and upregulates the expression of Nicotiana benthamiana thioredoxin h-type 1 (NbTRXh1). The γb protein interacts directly with NbTRXh1 in vivo and in vitro. The overexpression of NbTRXh1, but not a reductase-defective mutant, impedes BSMV infection, whereas low NbTRXh1 expression level results in increased viral accumulation. Similar with its orthologs in Arabidopsis (Arabidopsis thaliana), NbTRXh1 also plays an essential role in SA signaling transduction in N. benthamiana. To counteract NbTRXh1-mediated defenses, the BSMV γb protein targets NbTRXh1 to dampen its reductase activity, thereby impairing downstream SA defense gene expression to optimize viral cell-to-cell movement. We also found that NbTRXh1-mediated resistance defends against lychnis ringspot virus, beet black scorch virus, and beet necrotic yellow vein virus. Taken together, our results reveal a role for the multifunctional γb protein in counteracting plant defense responses and an expanded broad-spectrum antibiotic role of the SA signaling pathway.


Assuntos
Vírus de Plantas , Ácido Salicílico , Oxirredutases/metabolismo , Doenças das Plantas , Vírus de Plantas/metabolismo , Ácido Salicílico/metabolismo , Tiorredoxina h/genética , Tiorredoxina h/metabolismo , Nicotiana/metabolismo
9.
Arch Virol ; 168(12): 289, 2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-37950823

RESUMO

In 2021, Plumbago indica plants with necrotic spots on their leaves were observed in Beijing, China. Through high-throughput sequencing, we discovered a putative novel member of the genus Cytorhabdovirus, which was provisionally named "plumbago necrotic spot-associated virus" (PNSaV). The full-length negative-sense single-stranded RNA genome of this virus is 13,180 nucleotides in length and contains eight putative open reading frames (ORFs), in the order 3' leader-N-(P')-P-P3-M-G-P6-L-5' trailer. Phylogenetic analysis and pairwise comparisons suggested that PNSaV is most closely related to pastinaca cytorhabdovirus 1, with 59.2% nucleotide sequence identity in the complete genome and 56.4% amino acid sequence identity in the L protein. These findings suggest that PNSaV should be considered a new member of the genus Cytorhabdovirus.


Assuntos
Plumbaginaceae , Rhabdoviridae , Plumbaginaceae/genética , Genoma Viral , Filogenia , RNA Viral/genética , Rhabdoviridae/genética , Fases de Leitura Aberta , Doenças das Plantas
10.
Plant Physiol ; 186(1): 715-730, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-33576790

RESUMO

Protein phosphorylation is a common post-translational modification that frequently occurs during plant-virus interaction. Host protein kinases often regulate virus infectivity and pathogenicity by phosphorylating viral proteins. The Barley stripe mosaic virus (BSMV) γb protein plays versatile roles in virus infection and the coevolutionary arms race between plant defense and viral counter-defense. Here, we identified that the autophosphorylated cytosolic serine/threonine/tyrosine (STY) protein kinase 46 of Nicotiana benthamiana (NbSTY46) phosphorylates and directly interacts with the basic motif domain (aa 19-47) of γb in vitro and in vivo. Overexpression of wild-type NbSTY46, either transiently or transgenically, suppresses BSMV replication and ameliorates viral symptoms, whereas silencing of NbSTY46 leads to increased viral replication and exacerbated symptom. Moreover, the antiviral role of NbSTY46 requires its kinase activity, as the NbSTY46T436A mutant, lacking kinase activity, not only loses the ability to phosphorylate and interact with γb but also fails to impair BSMV infection when expressed in plants. NbSTY46 could also inhibit the replication of Lychnis ringspot virus, another chloroplast-replicating hordeivirus. In summary, we report a function of the cytosolic kinase STY46 in defending against plant viral infection by phosphorylating a viral protein in addition to its basal function in plant growth, development, and abiotic stress responses.


Assuntos
Nicotiana/imunologia , Proteínas de Plantas/genética , Vírus de Plantas/fisiologia , Proteínas Serina-Treonina Quinases/genética , Vírus de RNA/fisiologia , Fosforilação , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Nicotiana/genética , Nicotiana/virologia
11.
Phytopathology ; 112(3): 567-578, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34615378

RESUMO

Thifluzamide, a succinate dehydrogenase (SDH) inhibitor, possesses high activity against Rhizoctonia. In this study, 144 Rhizoctonia solani AG-4 (4HGI, 4HGII, and 4HGIII) isolates, the predominate pathogen associated with sugar beet seedling damping-off, were demonstrated to be sensitive to thifluzamide with a calculated mean median effective concentration of 0.0682 ± 0.0025 µg/ml. Thifluzamide-resistant isolates were generated using fungicide-amended media, resulting in four AG-4HGI isolates and eight AG-4HGII isolates with stable resistance and almost no loss in fitness. Evaluation of cross-resistance of the 12 thifluzamide-resistant isolates and their corresponding parental-sensitive isolates revealed a moderately positive correlation between thifluzamide resistance and the level of resistance to eight other fungicides from three groups, the exception being fludioxonil. An active efflux of fungicide through ATP-binding cassette and major facilitator superfamily transporters was found to be correlated to the resistance of R. solani AG-4HGII isolates to thifluzamide based on RNA-sequencing and quantitative reverse transcription-PCR analyses. Sequence analysis of sdhA, sdhB, sdhC, and sdhD revealed replacement of isoleucine by phenylalanine at position 61 in SDHC in 9 of the 12 generated thifluzamide-resistant isolates. No other mutations were found in any of the other genes. Collectively, the data indicate that the active efflux of fungicide and a point mutation in sdhC may contribute to the resistance of R. solani AG-4HGI and AG-4HGII isolates to thifluzamide in vitro. This is the first characterization of the potential molecular mechanism associated with the resistance of R. solani AG-4 isolates to thifluzamide and provides practical guidance for the use of this fungicide.


Assuntos
Rhizoctonia , Succinato Desidrogenase , Anilidas , Doenças das Plantas , Rhizoctonia/genética , Succinato Desidrogenase/genética , Succinato Desidrogenase/metabolismo , Ácido Succínico/farmacologia , Tiazóis
12.
Plant Dis ; 2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35286127

RESUMO

Tobacco streak virus (TSV) is a member of the genus Ilarvirus in the family Bromoviridae (Vinodkumar et al. 2017). TSV is transmitted by thrips, seeds, pollen, and mechanical injury and has a broad host range, causing severe damage to several horticultural, oil and food crops including tobacco, sunflower, peanut, cotton, and soybean (Zambrana-Echevarría et al. 2021). TSV is now distributed mainly in the United States (McDaniel et al. 1992; Zambrana-Echevarría et al. 2021), India (Jain et al. 2008), Iran (Hosseini et al. 2012), Australia (Sharman et al. 2009) and Mexico (Silva-Rosales et al. 2013). Purple coneflower (Echinacea purpurea L.) is widely grown in China as an important herbal ornamental plant. In June 2020, Echinacea purpurea with the symptoms of necrosis lesions, malformation, and stunting were observed in the field of Haidian district, Beijing, China (40°2'69″ N, 116°28'28″ E) (Supplementary Fig. 1A). Total RNA of leaf tissue extracted using the hot borate method (Liang et al. 2020) was used for high-throughput sequencing on Illumina HiSeq X-10 platform at Biomarker Technologies (Beijing, China). Overall, 23,988,298 reads were generated. The final contigs assembled by Mega-Hit (v1.2.9) and Cap3 (Version Date: 02/10/15) were subjected to BLAST against GenBank using BLASTn and BLASTx algorithms. Of these contigs, 297 shared high nucleotide sequence similarities to the genomic sequence of broad bean wilt virus 2, while 9 contigs showed high nt sequence similarities (95-100%) to the genomic sequence of TSV. To confirm the presence of TSV, 30 randomly selected samples from Haidian district (40°2'69″ N, 116°28'28″ E) were tested by the double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) using a TSV specific monoclonal antibody (Agdia, SAR 25500/0500), where 18 samples were positive. In addition, total RNAs from 4 DAS-ELISA positive plants were extracted for TSV detection by reverse transcription-polymerase chain reactions (RT-PCR) using primer pair specific for the coat protein gene of TSV (TSV-CP-F, 5'-ATGAATACTTTGATCCAAGGTCC-3'; TSV-CP-R, 5'-TCAGTCTTGATTCACCAGAAAA-3'). The fragment with the expected size (~700 bp) was amplified in all 4 plants (Supplementary Fig. 1B) and subjected to direct Sanger sequencing. The CP gene of TSV CNB isolate was deposited in GenBank (MZ542767) and shared 100% sequence identity at the nucleotide level with the Gyp isolate infecting Ajuga reptans from Australia (JX463347.1). Furthermore, the local lesion host Chenopodium quinoa was used to purify and propagate TSV by mechanical inoculation with infected leaf sap. A pure culture of the TSV CNB isolate was obtained by single local lesion isolation after 3 serial passages on C. quinoa and back inoculated on E. purpurea seedlings. Systemic symptomology including leaf malformation was observed on E. purpurea three weeks post-inoculation (Supplementary Fig. 2A). The existence of TSV in two symptomatic leaf samples of E. purpurea was further verified by RT-PCR using specific primer pair (TSV-CP-F/R) (Supplementary Fig. 2B). In addition, the purified TSV CNB isolate was also inoculated to Nicotiana tabacum (Supplementary Fig. 2C). As previously reported (More et al. 2017), the Nicotiana tabacum plants infected with TSV developed typical streaks in systemic leaves. To the best of our knowledge, this is the first report of TSV on E. purpurea in China. This finding will assist further investigation into the epidemiology of diseases caused by TSV in China. Future studies are required to determine the incidence and impact that TSV might have on E. purpurea and other hosts in China.

13.
Int J Mol Sci ; 23(4)2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35216065

RESUMO

P0 proteins encoded by poleroviruses Brassica yellows virus (BrYV) and Potato leafroll virus (PLRV) are viral suppressors of RNA silencing (VSR) involved in abolishing host RNA silencing to assist viral infection. However, other roles that P0 proteins play in virus infection remain unclear. Here, we found that C-terminal truncation of P0 resulted in compromised systemic infection of BrYV and PLRV. C-terminal truncation affected systemic but not local VSR activities of P0 proteins, but neither transient nor ectopic stably expressed VSR proteins could rescue the systemic infection of BrYV and PLRV mutants. Moreover, BrYV mutant failed to establish systemic infection in DCL2/4 RNAi or RDR6 RNAi plants, indicating that systemic infection might be independent of the VSR activity of P0. Partially rescued infection of BrYV mutant by the co-infected PLRV implied the functional conservation of P0 proteins within genus. However, although C-terminal truncation mutant of BrYV P0 showed weaker interaction with its movement protein (MP) when compared to wild-type P0, wild-type and mutant PLRV P0 showed similar interaction with its MP. In sum, our findings revealed the role of P0 in virus systemic infection and the requirement of P0 carboxyl terminal region for the infection.


Assuntos
Luteoviridae/genética , Luteoviridae/patogenicidade , Proteína P0 da Mielina/genética , Proteínas Virais/genética , Brassica/virologia , Mutação/genética , Doenças das Plantas/virologia , Proteínas de Plantas/genética , Interferência de RNA/fisiologia , Nicotiana/virologia
14.
Mol Plant Microbe Interact ; 34(1): 49-61, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32986512

RESUMO

Plant viruses often infect several distinct host species. Sometimes, viruses can systemically infect a specific host whereas, in other cases, only local infections occur in other species. How viral and host factors interact to determine systemic infections among different hosts is largely unknown, particularly for icosahedral positive-stranded RNA viruses. The Tobacco necrosis virus-A Chinese isolate belongs to the genus Alphanecrovirus in the family Tombusviridae. In this study, we investigated variations in systemic infections of tobacco necrosis virus-AC (TNV-AC) in Nicotiana benthamiana and Glycine max (soybean) by alanine-scanning mutagenesis of the viral coat protein (CP), which is essential for systemic movement of TNV-AC. We found that three amino acids, R169, K177, and Q233, are key residues that mediate varying degrees of systemic infections of N. benthamiana and soybean. Further analysis revealed that variations in systemic trafficking of TNV-AC CP mutants in N. benthamiana and soybean are associated with virion assembly and stability. The CP amino acids K177 and Q233 are highly conserved among all TNV-A isolates and are replaced by Q and K in the TNV-D isolates. We demonstrated that systemic infectivity of either TNV-AC K177A and Q233A or K177Q and Q233K mutants are correlated with the binding affinity of the mutated CPs to the host-specific Hsc70-2 protein. These results expand our understanding of host-dependent long-distance movement of icosahedral viruses in plants.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Proteínas do Capsídeo , Glycine max , Interações Hospedeiro-Patógeno , Nicotiana , Tombusviridae , Substituição de Aminoácidos/genética , Proteínas do Capsídeo/genética , Interações Hospedeiro-Patógeno/genética , RNA Viral/genética , Glycine max/virologia , Nicotiana/virologia , Tombusviridae/genética , Tombusviridae/patogenicidade
15.
Plant Cell ; 30(7): 1582-1595, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29848767

RESUMO

Autophagy is a conserved defense strategy against viral infection. However, little is known about the counterdefense strategies of plant viruses involving interference with autophagy. Here, we show that γb protein from Barley stripe mosaic virus (BSMV), a positive single-stranded RNA virus, directly interacts with AUTOPHAGY PROTEIN7 (ATG7). BSMV infection suppresses autophagy, and overexpression of γb protein is sufficient to inhibit autophagy. Furthermore, silencing of autophagy-related gene ATG5 and ATG7 in Nicotiana benthamiana plants enhanced BSMV accumulation and viral symptoms, indicating that autophagy plays an antiviral role in BSMV infection. Molecular analyses indicated that γb interferes with the interaction of ATG7 with ATG8 in a competitive manner, whereas a single point mutation in γb, Tyr29Ala (Y29A), made this protein deficient in the interaction with ATG7, which was correlated with the abolishment of autophagy inhibition. Consistently, the mutant BSMVY29A virus showed reduced symptom severity and viral accumulation. Taken together, our findings reveal that BSMV γb protein subverts autophagy-mediated antiviral defense by disrupting the ATG7-ATG8 interaction to promote plant RNA virus infection, and they provide evidence that ATG7 is a target of pathogen effectors that functions in the ongoing arms race of plant defense and viral counterdefense.


Assuntos
Vírus de Plantas/metabolismo , Vírus de Plantas/patogenicidade , Proteínas de Plantas/metabolismo , Vírus de Plantas/genética , Ligação Proteica , RNA Viral/genética , Nicotiana/metabolismo , Nicotiana/virologia
16.
Arch Virol ; 165(7): 1719-1723, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32424446

RESUMO

A double-stranded RNA (dsRNA) segment was identified in Rhizoctonia solani anastomosis group (AG)-2-2IIIB, the primary causal agent of Rhizoctonia crown and root rot of sugar beet. The dsRNA segment represented the genome replication intermediate of a new mitovirus that was tentatively designated as "Rhizoctonia solani mitovirus 39" (RsMV-39). The complete sequence of the dsRNA was 2805 bp in length with 61.9% A+U content. Using either the fungal mitochondrial or universal genetic code, a protein of 840 amino acids containing an RNA-dependent RNA polymerase (RdRp) domain was predicted with a molecular mass of 94.46 kDa. BLASTp analysis revealed that the RdRp domain of RsMV-39 had 43.55% to 72.96% sequence identity to viruses in the genus Mitovirus, and was the most similar (72.96% identical) to that of Ceratobasidium mitovirus A (CbMV-A). Phylogenetic analysis based on RdRp domains clearly showed that RsMV-39 is a member of a distinct species in the genus Mitovirus of the family Mitoviridae. This is the first full genome sequence of a mycovirus associated with R. solani AG-2-2IIIB.


Assuntos
Beta vulgaris/microbiologia , Micovírus/isolamento & purificação , Genoma Viral , Doenças das Plantas/microbiologia , Vírus de RNA/isolamento & purificação , Rhizoctonia/virologia , Sequência de Bases , Micovírus/classificação , Micovírus/genética , Filogenia , Vírus de RNA/classificação , Vírus de RNA/genética , Rhizoctonia/fisiologia
17.
Int J Mol Sci ; 21(19)2020 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-32992609

RESUMO

To counteract host antiviral RNA silencing, plant viruses encode numerous viral suppressors of RNA silencing (VSRs). P0 proteins have been identified as VSRs in many poleroviruses. However, their suppressor function has not been fully characterized. Here, we investigated the function of P0 from pea mild chlorosis virus (PMCV) in the suppression of local and systemic RNA silencing via green fluorescent protein (GFP) co-infiltration assays in wild-type and GFP-transgenic Nicotiana benthamiana (line 16c). Amino acid deletion analysis showed that N-terminal residues Asn 2 and Val 3, but not the C-terminus residues from 230-270 aa, were necessary for PMCV P0 (P0PM) VSR activity. P0PM acted as an F-box protein, and triple LPP mutation (62LPxx79P) at the F-box-like motif abolished its VSR activity. In addition, P0PM failed to interact with S-phase kinase-associated protein 1 (SKP1), which was consistent with previous findings of P0 from potato leafroll virus. These data further support the notion that VSR activity of P0 is independent of P0-SKP1 interaction. Furthermore, we examined the effect of P0PM on ARGONAUTE1 (AGO1) protein stability, and co-expression analysis showed that P0PM triggered AGO1 degradation. Taken together, our findings suggest that P0PM promotes degradation of AGO1 to suppress RNA silencing independent of SKP1 interaction.


Assuntos
Proteínas F-Box/metabolismo , Luteoviridae/metabolismo , Proteína P0 da Mielina/metabolismo , Nicotiana/genética , Nicotiana/virologia , Necrose e Clorose das Plantas/virologia , Interferência de RNA , Proteínas Virais/metabolismo , Proteínas Argonautas/metabolismo , Proteínas de Fluorescência Verde/genética , Mutação , Organismos Geneticamente Modificados , Necrose e Clorose das Plantas/genética , Proteínas de Plantas/metabolismo , Proteólise , Proteínas Quinases Associadas a Fase S/metabolismo
18.
Plant Biotechnol J ; 17(7): 1302-1315, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30565826

RESUMO

Many plant viruses with monopartite or bipartite genomes have been developed as efficient expression vectors of foreign recombinant proteins. Nonetheless, due to lack of multiple insertion sites in these plant viruses, it is still a big challenge to simultaneously express multiple foreign proteins in single cells. The genome of Beet necrotic yellow vein virus (BNYVV) offers an attractive system for expression of multiple foreign proteins owning to a multipartite genome composed of five positive-stranded RNAs. Here, we have established a BNYVV full-length infectious cDNA clone under the control of the Cauliflower mosaic virus 35S promoter. We further developed a set of BNYVV-based vectors that permit efficient expression of four recombinant proteins, including some large proteins with lengths up to 880 amino acids in the model plant Nicotiana benthamiana and native host sugar beet plants. These vectors can be used to investigate the subcellular co-localization of multiple proteins in leaf, root and stem tissues of systemically infected plants. Moreover, the BNYVV-based vectors were used to deliver NbPDS guide RNAs for genome editing in transgenic plants expressing Cas9, which induced a photobleached phenotype in systemically infected leaves. Collectively, the BNYVV-based vectors will facilitate genomic research and expression of multiple proteins, in sugar beet and related crop plants.


Assuntos
Edição de Genes , Vetores Genéticos , Vírus de Plantas , Plantas Geneticamente Modificadas , RNA Guia de Cinetoplastídeos , Beta vulgaris/genética , Doenças das Plantas , Regiões Promotoras Genéticas , Nicotiana/genética
19.
PLoS Pathog ; 13(4): e1006319, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28388677

RESUMO

RNA viruses encode various RNA binding proteins that function in many steps of viral infection cycles. These proteins function as RNA helicases, methyltransferases, RNA-dependent RNA polymerases, RNA silencing suppressors, RNA chaperones, movement proteins, and so on. Although many of the proteins bind the viral RNA genome during different stages of infection, our knowledge about the coordination of their functions is limited. In this study, we describe a novel role for the Barley stripe mosaic virus (BSMV) γb as an enhancer of αa RNA helicase activity, and we show that the γb protein is recruited by the αa viral replication protein to chloroplast membrane sites of BSMV replication. Mutagenesis or deletion of γb from BSMV resulted in reduced positive strand (+) RNAα accumulation, but γb mutations abolishing viral suppressor of RNA silencing (VSR) activity did not completely eliminate genomic RNA replication. In addition, cis- or trans-expression of the Tomato bushy stunt virus p19 VSR protein failed to complement the γb replication functions, indicating that the direct involvement of γb in BSMV RNA replication is independent of VSR functions. These data support a model whereby two BSMV-encoded RNA-binding proteins act coordinately to regulate viral genome replication and provide new insights into strategies whereby double-stranded viral RNA unwinding is regulated, as well as formation of viral replication complexes.


Assuntos
Cloroplastos/virologia , Vírus do Mosaico/isolamento & purificação , Vírus de RNA/metabolismo , RNA Viral/metabolismo , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/fisiologia , Cloroplastos/metabolismo , Expressão Gênica/fisiologia , Interferência de RNA/fisiologia , Vírus de RNA/genética , RNA Viral/genética , RNA Polimerase Dependente de RNA/metabolismo
20.
New Phytol ; 222(3): 1458-1473, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30664234

RESUMO

P0 protein of some polerovirus members can target ARGONAUTE1 (AGO1) to suppress RNA silencing. Although P0 harbors an F-box-like motif reported to be essential for interaction with S phase kinase-associated protein 1 (SKP1) and RNA silencing suppression, it is the autophagy pathway that was shown to contribute to AGO1 degradation. Therefore, the role of P0-SKP1 interaction in silencing suppression remains unclear. We conducted global mutagenesis and comparative functional analysis of P0 encoded by Brassica yellows virus (BrYV) (P0Br ). We found that several residues within P0Br are required for local and systemic silencing suppression activities. Remarkably, the F-box-like motif mutant of P0Br , which failed to interact with SKP1, is destabilized in vivo. Both the 26S proteasome system and autophagy pathway play a role in destabilization of the mutant protein. Furthermore, silencing of a Nicotiana benthamiana SKP1 ortholog leads to the destabilization of P0Br . Genetic analyses indicated that the P0Br -SKP1 interaction is not directly required for silencing suppression activity of P0Br , but it facilitates stability of P0Br to ensure efficient RNA silencing suppression. Consistent with these findings, efficient systemic infection of BrYV requires P0Br . Our results reveal a novel strategy used by BrYV for facilitating viral suppressors of RNA silencing stability against degradation by plant cells.


Assuntos
Autofagia , Luteoviridae/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Proteínas Quinases Associadas a Fase S/metabolismo , Proteínas Virais/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Inativação Gênica , Modelos Biológicos , Mutagênese/genética , Mutação/genética , Proteínas de Plantas/metabolismo , Estabilidade Proteica , Nicotiana/metabolismo , Nicotiana/virologia , Proteínas Virais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA