Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 11(6)2021 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-34204074

RESUMO

The construction of a heterostructured nanowires array allows the simultaneous manipulation of the interfacial, surface, charge transport, and transfer properties, offering new opportunities to achieve multi-functionality for various applications. Herein, we developed facile thermal evaporation and post-annealing method to synthesize ternary-Zn2SnO4/binary-ZnO radially heterostructured nanowires array (HNA). Vertically aligned ZnO nanowires array (3.5 µm in length) were grown on a ZnO-nanoparticle-seeded, fluorine-doped tin oxide substrate by a hydrothermal method. Subsequently, the amorphous layer consisting of Zn-Sn-O complex was uniformly deposited on the surface of the ZnO nanowires via the thermal evaporation of the Zn and Sn powder mixture in vacuum, followed by post-annealing at 550 °C in air to oxidize and crystallize the Zn2SnO4 shell layer. The use of a powder mixture composed of elemental Zn and Sn (rather than oxides and carbon mixture) as an evaporation source ensures high vapor pressure at a low temperature (e.g., 700 °C) during thermal evaporation. The morphology, microstructure, and charge-transport properties of the Zn2SnO4/ZnO HNA were investigated by scanning electron microscopy, X-ray diffraction, Raman spectroscopy, transmission electron microscopy, and electrochemical impedance spectroscopy. Notably, the optimally synthesized Zn2SnO4/ZnO HNA shows an intimate interface, high surface roughness, and superior charge-separation and -transport properties compared with the pristine ZnO nanowires array.

2.
ACS Appl Mater Interfaces ; 6(13): 10028-43, 2014 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-24940708

RESUMO

The realization of arrays of high-aspect-ratio nitrogen-doped ZnO (NZO) nanorod is critical to the development of high-quality nanostructure-based optoelectronic and electronic devices. In this study, we used a solution-based method to grow arrays of vertically aligned high-aspect-ratio NZO nanorods on ZnO seed layer covered fluorine-doped tin oxide substrates. We investigated whether the diameters and aspect ratios of the nanorods were affected by the addition of polyethylenimine (PEI) to the precursor solution used as well as by variations in the growth temperature and the concentration of the precursor solution. The performances of dye-sensitized solar cells (DSSCs) in which the synthesized high-aspect-ratio NZO nanorods were used as the photoanode material were also studied. That the dopant, nitrogen, was introduced into the ZnO lattice was confirmed using X-ray photoelectron spectroscopy and energy-dispersive X-ray spectroscopy. It was seen that after the addition of PEI, the NZO and ZnO nanorod arrays increased in length and their diameters became smaller (i.e., their aspect ratios increased). This resulted in an increase in the amount of dye absorbed by them, leading to improvements in the DSSCs based on the nanorods. The structural, morphological, optical, and photovoltaic characteristics of ZnO and NZO nanorod arrays synthesized using different precursor concentrations and growth temperatures (160-190 °C) were also examined. We also investigated the effect of the use of PEI on these characteristics. The power conversion efficiency (PCE) of DSSCs fabricated using the NZO nanorod arrays was found to be significantly higher than that of DSSCs based on the pure ZnO nanorod arrays. This increase in efficiency could be attributed to the combined effects of the increase in the charge-carrier concentration, change in morphology, and increase in the Fermi energy levels of the nanorods, which resulted because of N doping. A PCE of 5.0% was obtained for a DSSC based on a film of arrays of NZO nanorods having an aspect ratio of ∼47 and synthesized using PEI.

3.
ACS Appl Mater Interfaces ; 6(2): 1145-51, 2014 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-24372274

RESUMO

We report, for the first time, the synthesis of the Y3Al5O12:Ce(3+) hollow phosphor particles with a uniform size distribution via the Kirkendall effect, characterized by using a combination of in situ X-ray diffraction and high-resolution transmission electron microscopy analyses as a function of calcination temperature. The formation of hollow Y3Al5O12:Ce(3+) particles was revealed to originate from the different diffusivities of atoms (Al and Y) in a diffusion couple, causing a supersaturation of lattice vacancies. The optical characterization using photoluminescence spectroscopy and scanning confocal microscopy clearly showed the evidence of YAG (yttrium aluminum garnet) hollow shells with emission at 545 nm. Another advantage of this methodology is that the size of hollow shells can be tunable by changing the size of initial nanotemplates that are spherical aluminum hydroxide nanoparticles. In this study, we synthesized the hollow shell particles with average diameters of 140 and 600 nm as representatives to show the range of particle sizes. Because of the unique structural and optical properties, the Y3Al5O12:Ce(3+) hollow shells can be another alternative to luminescence materials such as quantum dots and organic dyes, which promote their utilization in various fields, including optoelectronic and nanobio devices.

4.
Nanoscale ; 5(17): 7825-30, 2013 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-23831925

RESUMO

A key challenge to the industrial application of nanotechnology is the development of fabrication processes for functional devices based on nanomaterials which can be scaled up for mass production. In this report, we disclose the results of non-thermal radio-frequency (rf) atmospheric pressure plasma (APP) based deposition of TiO2 nanoparticles on a flexible substrate for the fabrication of dye-sensitized solar cells (DSSCs). Operating at 190 °C without a vacuum enclosure, the APP method can avoid thermal damage and vacuum compatibility restrictions and utilize roll-to-roll processing over a large area. The various analyses of the TiO2 films demonstrate that superior film properties can be obtained by the non-thermal APP method when compared with the thermal sintering process operating at 450 °C. The crystallinity of the anatase TiO2 nanoparticles is significantly improved without thermal agglomeration, while the surface defects such as Ti(3+) ions are eliminated, thus providing efficient charge collecting properties for solar cells. Finally, we successfully fabricated a flexible DSSC with an energy conversion efficiency of 4.2% using a transparent plastic substrate. This work demonstrates the potential of non-thermal APP technology in the area of device-level, nano-enabled material manufacturing.


Assuntos
Corantes/química , Energia Solar , Pressão Atmosférica , Fontes de Energia Elétrica , Eletrodos , Nanopartículas Metálicas/química , Titânio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA