Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Opt Lett ; 49(6): 1425-1428, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489416

RESUMO

Terahertz cross correlation spectroscopy (THz-CCS) systems using broadband incoherent light as the pumping source have received increasing attention from researchers in recent years. However, a comprehensive and in-depth understanding of THz-CCS is still needed to obtain a detailed optimization scheme. Here we systematically investigate the influences of the detection parameters, light propagation process, and pump source on the CCS signals. The impacts of the filter slopes and time constants in lock-in detection are revealed for optimizing the signal-to-noise ratio and bandwidth of the THz signal. By varying the optical fiber length and dispersion coefficient, the dispersion insensitivity of THz-CCS was experimentally demonstrated. The comparison of different pump sources (SLD and ASE) shows that the over-wide and non-flat pump spectrum may attenuate the CCS signal because of the energy waste brought by the photomixing process under the limited bandwidth of the photomixer. Our research may lead to a deeper understanding and further optimization of the THz-CCS system, which will promote the development and widespread application of what is to the best of our knowledge a new technique.

2.
J Chem Phys ; 160(19)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38752533

RESUMO

Ion hydration plays a crucial role in numerous fundamental processes. Various spectroscopic methods are employed to investigate the slowing down of hydration bond dynamics in the proximity of both anions and cations. To date, most of these studies have primarily focused on the properties of binary systems. However, in comparison to ion-water binary systems, ternary systems that involve ions, water, and organic matter are more prevalent in nature and provide more realistic insights into biological processes. This study focuses on ion hydration in water and alcohol mixture using terahertz spectroscopy and x-ray diffraction (XRD). The results reveal a distinct behavior depending on the type of alcohol used. Specifically, the presence of both methanol and ethanol results in the disappearance of absorption peaks associated with NaCl hydrate at low temperatures. In contrast, tert-butanol does not exhibit such an effect, and isopropanol demonstrates a more complex response. By combining these terahertz spectroscopic findings with low-temperature XRD data, we gain insights into the formation, or lack thereof, of NaCl · 2H2O hydrate crystals. Crucially, our observations suggest a dominant correlation between the polarity of the alcohol molecules and its impact on the Na+ hydration. Strongly polar alcohols preferentially solvating the Na+ ion lead to the failure of hydrate formation, while weakly polar alcohols do not have this effect.

3.
Adv Mater ; 36(14): e2308453, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38180283

RESUMO

High-sensitive metasurface-based sensors are essential for effective substance detection and insightful bio-interaction studies, which compress light in subwavelength volumes to enhance light-matter interactions. However, current methods to improve sensing performance always focus on optimizing near-field response of individual meta-atom, and fingerprint recognition for bio-substances necessitates several pixelated metasurfaces to establish a quasi-continuous spectrum. Here, a novel sensing strategy is proposed to achieve Terahertz (THz) refractive sensing, and fingerprint recognition based on surface waves (SWs). Leveraging the long-range transmission, strong confinement, and interface sensitivity of SWs, a metasurface-supporting SWs excitation and propagation is experimentally verified to achieve sensing integrations. Through wide-band information collection of SWs, the proposed sensor not only facilitates refractive sensing up to 215.5°/RIU, but also enables the simultaneous resolution of multiple fingerprint information within a continuous spectrum. By covering 5 µm thickness of polyimide, quartz and silicon nitride layers, the maximum phase change of 91.1°, 101.8°, and 126.4° is experimentally obtained within THz band, respectively. Thus, this strategy broadens the research scope of metasurface-excited SWs and introduces a novel paradigm for ultrasensitive sensing functions.

4.
ACS Nano ; 18(14): 10104-10112, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38527229

RESUMO

Protein layers formed on solid surfaces have important applications in various fields. High-resolution characterization of the morphological structures of protein forms in the process of developing protein layers has significant implications for the control of the layer's quality as well as for the evaluation of the layer's performance. However, it remains challenging to precisely characterize all possible morphological structures of protein in various forms, including individuals, networks, and layers involved in the formation of protein layers with currently available methods. Here, we report a terahertz (THz) morphological reconstruction nanoscopy (THz-MRN), which can reveal the nanoscale three-dimensional structural information on a protein sample from its THz near-field image by exploiting an extended finite dipole model for a thin sample. THz-MRN allows for both surface imaging and subsurface imaging with a vertical resolution of ∼0.5 nm, enabling the characterization of various forms of proteins at the single-molecule level. We demonstrate the imaging and morphological reconstruction of single immunoglobulin G (IgG) molecules, their networks, a monolayer, and a heterogeneous double layer comprising an IgG monolayer and a horseradish peroxidase-conjugated anti-IgG layer. The established THz-MRN presents a useful approach for the label-free and nondestructive study of the formation of protein layers.


Assuntos
Imagem Terahertz , Humanos , Imagem Terahertz/métodos , Nanotecnologia , Imunoglobulina G
5.
Natl Sci Rev ; 11(8): nwae116, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39007007

RESUMO

Flexible multiplexing chips that permit reconfigurable multidimensional channel utilization are indispensable for revolutionary 6G terahertz communications, but the insufficient manipulation capability of terahertz waves prevents their practical implementation. Herein, we propose the first experimental demonstration of a flexible multiplexing chip for terahertz communication by revealing the unique mechanism of topological phase (TP) transition and perseveration in a heterogeneously coupled bilayer valley Hall topological photonic system. The synthetic and individual TPs operated in the coupled and decoupled states enable controllable on-chip modular TP transitions and subchannel switching. Two time-frequency interleaved subchannels support 10- and 12-Gbit/s QAM-16 high-speed data streams along corresponding paths over carriers of 120 and 130 GHz with 2.5- and 3-GHz bandwidths, respectively. This work unlocks interlayer heterogeneous TPs for inspiring ingenious on-chip terahertz-wave regulation, allowing functionality-reconfigurable, compactly integrated and CMOS-compatible chips.

6.
Biosensors (Basel) ; 13(12)2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38131774

RESUMO

The World Health Organization (WHO) declared in a May 2023 announcement that the COVID-19 illness is no longer categorized as a Public Health Emergency of International Concern (PHEIC); nevertheless, it is still considered an actual threat to world health, social welfare and economic stability. Consequently, the development of a convenient, reliable and affordable approach for detecting and identifying SARS-CoV-2 and its emerging new variants is crucial. The fingerprint and signal amplification characteristics of surface-enhanced Raman spectroscopy (SERS) could serve as an assay scheme for SARS-CoV-2. Here, we report a machine learning-based label-free SERS technique for the rapid and accurate detection and identification of SARS-CoV-2. The SERS spectra collected from samples of four types of coronaviruses on gold nanoparticles film, fabricated using a Langmuir-Blodgett self-assembly, can provide more spectroscopic signatures of the viruses and exhibit low limits of detection (<100 TCID50/mL or even <10 TCID50/mL). Furthermore, the key Raman bands of the SERS spectra were systematically captured by principal component analysis (PCA), which effectively distinguished SARS-CoV-2 and its variant from other coronaviruses. These results demonstrate that the combined use of SERS technology and PCA analysis has great potential for the rapid analysis and discrimination of multiple viruses and even newly emerging viruses without the need for a virus-specific probe.


Assuntos
COVID-19 , Nanopartículas Metálicas , Humanos , Análise Espectral Raman/métodos , SARS-CoV-2 , Nanopartículas Metálicas/química , Análise de Componente Principal , Ouro/química , COVID-19/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA