Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 81(7): 1425-1438.e10, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33662272

RESUMO

Eukaryotic elongation factor 2 (eEF2) mediates translocation of peptidyl-tRNA from the ribosomal A site to the P site to promote translational elongation. Its phosphorylation on Thr56 by its single known kinase eEF2K inactivates it and inhibits translational elongation. Extensive studies have revealed that different signal cascades modulate eEF2K activity, but whether additional factors regulate phosphorylation of eEF2 remains unclear. Here, we find that the X chromosome-linked intellectual disability protein polyglutamine-binding protein 1 (PQBP1) specifically binds to non-phosphorylated eEF2 and suppresses eEF2K-mediated phosphorylation at Thr56. Loss of PQBP1 significantly reduces general protein synthesis by suppressing translational elongation. Moreover, we show that PQBP1 regulates hippocampal metabotropic glutamate receptor-dependent long-term depression (mGluR-LTD) and mGluR-LTD-associated behaviors by suppressing eEF2K-mediated phosphorylation. Our results identify PQBP1 as a novel regulator in translational elongation and mGluR-LTD, and this newly revealed regulator in the eEF2K/eEF2 pathway is also an excellent therapeutic target for various disease conditions, such as neural diseases, virus infection, and cancer.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Hipocampo/metabolismo , Depressão Sináptica de Longo Prazo , Elongação Traducional da Cadeia Peptídica , Fator 2 de Elongação de Peptídeos/metabolismo , Receptores de Glutamato Metabotrópico/biossíntese , Animais , Proteínas de Ligação a DNA/genética , Células HEK293 , Células HeLa , Humanos , Camundongos , Camundongos Knockout , Fator 2 de Elongação de Peptídeos/genética , Fosforilação , Receptores de Glutamato Metabotrópico/genética
2.
J Biol Chem ; 300(8): 107537, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38971314

RESUMO

Neurite outgrowth is a critical step in neural development, leading to the generation of neurite branches that allow individual neurons to make contacts with multiple neurons within the target region. Polyglutamine-binding protein 1 (PQBP1) is a highly conserved protein with a key role in neural development. Our recent mass spectrometric analysis showed that PQBP1 associates with neural Wiskott-Aldrich syndrome protein (N-WASP), an important actin polymerization-promoting factor involved in neurite outgrowth. Here, we report that the WW domain of PQBP1 directly interacts with the proline-rich domain of N-WASP. The disruption of this interaction leads to impaired neurite outgrowth and growth cone size. Furthermore, we demonstrate that PQBP1/N-WASP interaction is critical for the recruitment of N-WASP to the growth cone, but does not affect N-WASP protein levels or N-WASP-induced actin polymerization. Our results indicated that PQBP1 regulates neurite outgrowth by recruiting N-WASP to the growth cone, thus representing an alternative molecular mechanism via which PQBP1-mediates neurite outgrowth.

3.
Proc Natl Acad Sci U S A ; 119(12): e2113645119, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35294287

RESUMO

Acute nociception is essential for survival by warning organisms against potential dangers, whereas tissue injury results in a nociceptive hypersensitivity state that is closely associated with debilitating disease conditions, such as chronic pain. Transient receptor potential (Trp) ion channels expressed in nociceptors detect noxious thermal and chemical stimuli to initiate acute nociception. The existing hypersensitivity model suggests that under tissue injury and inflammation, the same Trp channels in nociceptors are sensitized through transcriptional and posttranslational modulation, leading to nociceptive hypersensitivity. Unexpectedly and different from this model, we find that in Drosophila larvae, acute heat nociception and tissue injury-induced hypersensitivity involve distinct cellular and molecular mechanisms. Specifically, TrpA1-D in peripheral sensory neurons mediates acute heat nociception, whereas TrpA1-C in a cluster of larval brain neurons transduces the heat stimulus under the allodynia state. As a result, interfering with synaptic transmission of these brain neurons or genetic targeting of TrpA1-C blocks heat allodynia but not acute heat nociception. TrpA1-C and TrpA1-D are two splicing variants of TrpA1 channels and are coexpressed in these brain neurons. We further show that Gq-phospholipase C signaling, downstream of the proalgesic neuropeptide Tachykinin, differentially modulates these two TrpA1 isoforms in the brain neurons by selectively sensitizing heat responses of TrpA1-C but not TrpA1-D. Together, our studies provide evidence that nociception and noncaptive sensitization could be mediated by distinct sensory neurons and molecular sensors.


Assuntos
Nociceptividade , Canais de Potencial de Receptor Transitório , Animais , Drosophila/fisiologia , Neurônios , Nociceptividade/fisiologia , Nociceptores/fisiologia , Transdutores , Canais de Potencial de Receptor Transitório/genética
4.
Hum Mol Genet ; 31(20): 3494-3503, 2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-35661211

RESUMO

Parkinson's disease (PD) is the second most common neurodegenerative disorder, and aging and genetic and environmental exposure can contribute to its pathogenesis. DNA methylation has been suggested to play a pivotal role in neurodevelopment and neurodegenerative diseases. 5-hydroxymethylcytosine (5hmC) is generated through 5-methylcytosine (5mC) oxidization by ten-eleven translocation proteins and is particularly enriched in the brain. Although 5hmC has been linked to multiple neurological disorders, little is known about 5hmC alterations in the substantia nigra of patients with PD. To determine the specific alterations in DNA methylation and hydroxymethylation in PD brain samples, we examined the genome-wide profiles of 5mC and 5hmC in the substantia nigra of patients with PD and Alzheimer's disease (ad). We identified 4119 differentially hydroxymethylated regions (DhMRs) and no differentially methylated regions (DMRs) in the postmortem brains of patients with PD compared with those of controls. These DhMRs were PD-specific when compared with the results of AD. Gene ontology analysis revealed that several signaling pathways, such as neurogenesis and neuronal differentiation, were significantly enriched in PD DhMRs. KEGG enrichment analysis revealed substantial alterations in multiple signaling pathways, including phospholipase D (PLD), cAMP and Rap1. In addition, using a PD Drosophila model, we found that one of the 5hmC-modulated genes, PLD1, modulated α-synuclein toxicity. Our analysis suggested that 5hmC may act as an independent epigenetic marker and contribute to the pathogenesis of PD.


Assuntos
Doença de Parkinson , Fosfolipase D , 5-Metilcitosina/metabolismo , Metilação de DNA/genética , Epigênese Genética , Humanos , Doença de Parkinson/genética , Fosfolipase D/genética , Fosfolipase D/metabolismo , Substância Negra/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
5.
Acta Pharmacol Sin ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740904

RESUMO

The circadian clock is the inner rhythm of life activities and is controlled by a self-sustained and endogenous molecular clock, which maintains a ~ 24 h internal oscillation. As the core element of the circadian clock, BMAL1 is susceptible to degradation through the ubiquitin-proteasome system (UPS). Nevertheless, scant information is available regarding the UPS enzymes that intricately modulate both the stability and transcriptional activity of BMAL1, affecting the cellular circadian rhythm. In this work, we identify and validate UBR5 as a new E3 ubiquitin ligase that interacts with BMAL1 by using affinity purification, mass spectrometry, and biochemical experiments. UBR5 overexpression induced BMAL1 ubiquitination, leading to diminished stability and reduced protein level of BMAL1, thereby attenuating its transcriptional activity. Consistent with this, UBR5 knockdown increases the BMAL1 protein. Domain mapping discloses that the C-terminus of BMAL1 interacts with the N-terminal domains of UBR5. Similarly, cell-line-based experiments discover that HYD, the UBR5 homolog in Drosophila, could interact with and downregulate CYCLE, the BMAL1 homolog in Drosophila. PER2-luciferase bioluminescence real-time reporting assay in a mammalian cell line and behavioral experiments in Drosophila reveal that UBR5 or hyd knockdown significantly reduces the period of the circadian clock. Therefore, our work discovers a new ubiquitin ligase UBR5 that regulates BMAL1 stability and circadian rhythm and elucidates the underlying molecular mechanism. This work provides an additional layer of complexity to the regulatory network of the circadian clock at the post-translational modification level, offering potential insights into the modulation of the dysregulated circadian rhythm.

6.
Biochem Soc Trans ; 51(1): 363-372, 2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36815699

RESUMO

Mutations in the polyglutamine tract-binding protein 1 (PQBP1) gene are associated with Renpenning syndrome, which is characterized by microcephaly, intellectual deficiency, short stature, small testes, and distinct facial dysmorphism. Studies using different models have revealed that PQBP1 plays essential roles in neural development and function. In this mini-review, we summarize recent findings relating to the roles of PQBP1 in these processes, including in the regulation of neural progenitor proliferation, neural projection, synaptic growth, neuronal survival, and cognitive function via mRNA transcription and splicing-dependent or -independent processes. The novel findings provide insights into the mechanisms underlying the pathogenesis of Renpenning syndrome and may advance drug discovery and treatment for this condition.


Assuntos
Paralisia Cerebral , Deficiência Intelectual , Deficiência Intelectual Ligada ao Cromossomo X , Humanos , Proteínas de Transporte/química , Deficiência Intelectual Ligada ao Cromossomo X/genética , Deficiência Intelectual Ligada ao Cromossomo X/patologia , Mutação , Paralisia Cerebral/genética , Paralisia Cerebral/patologia , Deficiência Intelectual/genética , Proteínas de Ligação a DNA/genética
7.
J Neurosci ; 41(10): 2164-2176, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33468565

RESUMO

Appropriate termination of the photoresponse in image-forming photoreceptors and downstream neurons is critical for an animal to achieve high temporal resolution. Although the cellular and molecular mechanisms of termination in image-forming photoreceptors have been extensively studied in Drosophila, the underlying mechanism of termination in their downstream large monopolar cells remains less explored. Here, we show that synaptic ACh signaling, from both amacrine cells (ACs) and L4 neurons, facilitates the rapid repolarization of L1 and L2 neurons. Intracellular recordings in female flies show that blocking synaptic ACh output from either ACs or L4 neurons leads to slow repolarization of L1 and L2 neurons. Genetic and electrophysiological studies in both male and female flies determine that L2 neurons express ACh receptors and directly receive ACh signaling. Moreover, our results demonstrate that synaptic ACh signaling from both ACs and L4 neurons simultaneously facilitates ERG termination. Finally, visual behavior studies in both male and female flies show that synaptic ACh signaling, from either ACs or L4 neurons to L2 neurons, is essential for the optomotor response of the flies in high-frequency light stimulation. Our study identifies parallel synaptic ACh signaling for repolarization of L1 and L2 neurons and demonstrates that synaptic ACh signaling facilitates L1 and L2 neuron repolarization to maintain the optomotor response of the fly on high-frequency light stimulation.SIGNIFICANCE STATEMENT The image-forming photoreceptor downstream neurons receive multiple synaptic inputs from image-forming photoreceptors and various types of interneurons. It remains largely unknown how these synaptic inputs modulate the neural activity and function of image-forming photoreceptor downstream neurons. We show that parallel synaptic ACh signaling from both amacrine cells and L4 neurons facilitates rapid repolarization of large monopolar cells in Drosophila and maintains the optomotor response of the fly on high-frequency light stimulation. This work is one of the first reports showing how parallel synaptic signaling modulates the activity of large monopolar cells and motion vision simultaneously.


Assuntos
Acetilcolina/metabolismo , Células Fotorreceptoras de Invertebrados/fisiologia , Vias Visuais/fisiologia , Percepção Visual/fisiologia , Animais , Drosophila , Feminino , Masculino , Sinapses/metabolismo
8.
Int J Mol Sci ; 23(20)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36293048

RESUMO

Sleep is a fundamental, evolutionarily conserved, plastic behavior that is regulated by circadian and homeostatic mechanisms as well as genetic factors and environmental factors, such as light, humidity, and temperature. Among environmental cues, temperature plays an important role in the regulation of sleep. This review presents an overview of thermoreception in animals and the neural circuits that link this process to sleep. Understanding the influence of temperature on sleep can provide insight into basic physiologic processes that are required for survival and guide strategies to manage sleep disorders.


Assuntos
Ritmo Circadiano , Sono , Animais , Ritmo Circadiano/fisiologia , Temperatura , Sono/fisiologia , Homeostase/fisiologia , Plásticos
9.
J Biol Chem ; 295(17): 5554-5563, 2020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-32198182

RESUMO

Heterotrimeric G proteins mediate a variety of signaling processes by coupling G protein-coupled receptors to intracellular effector molecules. In Drosophila, the Gαq gene encodes several Gαq splice variants, with the Gαq1 isoform protein playing a major role in fly phototransduction. However, Gαq1 null mutant flies still exhibit a residual light response, indicating that other Gαq splice variants or additional Gq α subunits are involved in phototransduction. Here, we isolated a mutant fly with no detectable light responses, decreased rhodopsin (Rh) levels, and rapid retinal degeneration. Using electrophysiological and genetic studies, biochemical assays, immunoblotting, real-time RT-PCR, and EM analysis, we found that mutations in the Gαq gene disrupt light responses and demonstrate that the Gαq3 isoform protein is responsible for the residual light response in Gαq1 null mutants. Moreover, we report that Gαq3 mediates rhodopsin synthesis. Depletion of all Gαq splice variants led to rapid light-dependent retinal degeneration, due to the formation stable Rh1-arrestin 2 (Arr2) complexes. Our findings clarify essential roles of several different Gαq splice variants in phototransduction and retinal integrity in Drosophila and reveal that Gαq3 functions in rhodopsin synthesis.


Assuntos
Proteínas de Drosophila/genética , Drosophila/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Transdução de Sinal Luminoso , Rodopsina/genética , Animais , Vias Biossintéticas , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Deleção de Genes , Mutação , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Retina/metabolismo , Degeneração Retiniana/genética , Degeneração Retiniana/metabolismo , Rodopsina/metabolismo
10.
J Biol Chem ; 295(13): 4093-4100, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32041777

RESUMO

Renpenning syndrome belongs to a group of X-linked intellectual disability disorders. The Renpenning syndrome-associated protein PQBP1 (polyglutamine-binding protein 1) is intrinsically disordered, associates with several splicing factors, and is involved in pre-mRNA splicing. PQBP1 uses its C-terminal YxxPxxVL motif for binding to the splicing factor TXNL4A (thioredoxin like 4A), but the biological function of this interaction has yet to be elucidated. In this study, using recombinant protein expression, in vitro binding assays, and immunofluorescence microscopy in HeLa cells, we found that a recently reported X-linked intellectual disability-associated missense mutation, resulting in the PQBP1-P244L variant, disrupts the interaction with TXNL4A. We further show that this interaction is critical for the subcellular location of TXNL4A. In combination with other PQBP1 variants lacking a functional nuclear localization signal required for recognition by the nuclear import receptor karyopherin ß2, we demonstrate that PQBP1 facilitates the nuclear import of TXNL4A via a piggyback mechanism. These findings expand our understanding of the molecular basis of the PQBP1-TXNL4A interaction and of the etiology and pathogenesis of Renpenning syndrome and related disorders.


Assuntos
Paralisia Cerebral/genética , Proteínas de Ligação a DNA/genética , Deficiência Intelectual Ligada ao Cromossomo X/genética , Ribonucleoproteína Nuclear Pequena U5/genética , beta Carioferinas/genética , Transporte Ativo do Núcleo Celular/genética , Paralisia Cerebral/patologia , Regulação da Expressão Gênica/genética , Células HeLa , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Deficiência Intelectual Ligada ao Cromossomo X/patologia , Mutação de Sentido Incorreto/genética , Ligação Proteica/genética , Precursores de RNA/genética , Splicing de RNA/genética , Fatores de Processamento de RNA/genética , Transdução de Sinais/genética
11.
J Biol Chem ; 294(35): 12892-12900, 2019 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-31324721

RESUMO

Light-induced endocytosis of rhodopsin in the retina is critical for preventing photoreceptor hyperactivity and for the survival of photoreceptor cells. In Drosophila, this process is mediated by arrestin1 (Arr1). Because Arr1 lacks a clathrin-binding domain required for receptor internalization and the C-terminal sequence that interacts with the ß-subunit of the clathrin adaptor protein AP2, the mechanism of how Arr1 mediates endocytosis of the major rhodopsin Rh1 is unclear. Here, using several approaches, including Arr binding and pulldown assays, immunofluorescence techniques, and EM imaging, we found that Drosophila metallophosphoesterase (dMPPE) is involved in light-induced rhodopsin endocytosis. We observed that the photoreceptor cells of a dmppe mutant exhibit impaired light-induced rhodopsin endocytosis and that this impairment is independent of dMPPE phosphoesterase activity. Furthermore, dMPPE directly interacted with Arr1 and promoted the association of Arr1 with AP2. Of note, genetic dmppe deletion largely prevented retinal degeneration in norpA (encoding phospholipase C) mutants, which were reported previously to contribute to retinal degeneration, by suppressing Rh1 endocytosis. Our findings demonstrate that Arr1 interacts with AP2 and that dMPPE functions as a critical regulator in Rh1 endocytosis and retinal degeneration.


Assuntos
Arrestina/metabolismo , Drosophila/enzimologia , Endocitose , Luz , Fosfoproteínas Fosfatases/metabolismo , Rodopsina/metabolismo , Fator de Transcrição AP-2/metabolismo , Animais
12.
EMBO J ; 35(2): 121-42, 2016 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-26702100

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that is characterized by selective loss of motor neurons in brain and spinal cord. TAR DNA-binding protein 43 (TDP-43) was identified as a major component of disease pathogenesis in ALS, frontotemporal lobar degeneration (FTLD), and other neurodegenerative disease. Despite the fact that TDP-43 is a multi-functional protein involved in RNA processing and a large number of TDP-43 RNA targets have been discovered, the initial toxic effect and the pathogenic mechanism underlying TDP-43-linked neurodegeneration remain elusive. In this study, we found that loss of TDP-43 strongly induced a nuclear translocation of TFEB, the master regulator of lysosomal biogenesis and autophagy, through targeting the mTORC1 key component raptor. This regulation in turn enhanced global gene expressions in the autophagy-lysosome pathway (ALP) and increased autophagosomal and lysosomal biogenesis. However, loss of TDP-43 also impaired the fusion of autophagosomes with lysosomes through dynactin 1 downregulation, leading to accumulation of immature autophagic vesicles and overwhelmed ALP function. Importantly, inhibition of mTORC1 signaling by rapamycin treatment aggravated the neurodegenerative phenotype in a TDP-43-depleted Drosophila model, whereas activation of mTORC1 signaling by PA treatment ameliorated the neurodegenerative phenotype. Taken together, our data indicate that impaired mTORC1 signaling and influenced ALP may contribute to TDP-43-mediated neurodegeneration.


Assuntos
Autofagia/fisiologia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Lisossomos/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Linhagem Celular , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Drosophila , Degeneração Lobar Frontotemporal/metabolismo , Células HEK293 , Células HeLa , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Modelos Biológicos , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Ratos , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
13.
Hum Mol Genet ; 26(5): 955-968, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28073926

RESUMO

Renpenning syndrome is a group of X-linked intellectual disability syndromes caused by mutations in human polyglutamine-binding protein 1 (PQBP1) gene. Little is known about the molecular pathogenesis of the various mutations that cause the notable variability in patients. In this study, we examine the cellular and synaptic functions of the most common mutations found in the patients: c.461_462delAG, c.459_462delAGAG and c.463_464dupAG in an AG hexamer in PQBP1 exon 4. We discovered that PQBP1 c.459_462delAGAG and c.463_464dupAG mutations encode a new C-terminal epitope that preferentially binds non-phosphorylated fragile X mental retardation protein (FMRP) and promotes its ubiquitin-mediated degradation. Impairment of FMRP function up-regulates its targets such as MAP1B, and disrupts FMRP-dependent synaptic scaling in primary cultured neurons. In Drosophila neuromuscular junction model, PQBP1 c.463_464dupAG transgenic flies showed remarkable defects of synaptic over-growth, which can be rescued by exogenously expressing dFMRP. Our data strongly support a gain-of-function pathogenic mechanism of PQBP1 c.459_462delAGAG and c.463_464dupAG mutations, and suggest that therapeutic strategies to restore FMRP function may be beneficial for those patients.


Assuntos
Proteínas de Transporte/genética , Paralisia Cerebral/genética , Proteína do X Frágil da Deficiência Intelectual/genética , Deficiência Intelectual/genética , Deficiência Intelectual Ligada ao Cromossomo X/genética , Proteínas Nucleares/genética , Animais , Animais Geneticamente Modificados , Proteínas de Transporte/biossíntese , Paralisia Cerebral/metabolismo , Paralisia Cerebral/patologia , Proteínas de Ligação a DNA , Modelos Animais de Doenças , Drosophila/genética , Epitopos/genética , Epitopos/imunologia , Proteína do X Frágil da Deficiência Intelectual/biossíntese , Humanos , Deficiência Intelectual/imunologia , Deficiência Intelectual/patologia , Deficiência Intelectual Ligada ao Cromossomo X/metabolismo , Deficiência Intelectual Ligada ao Cromossomo X/patologia , Proteínas Associadas aos Microtúbulos/genética , Mutação , Junção Neuromuscular , Proteínas Nucleares/biossíntese , Peptídeos/genética , Proteólise , Ubiquitina/genética
15.
J Biol Chem ; 292(35): 14334-14348, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28710284

RESUMO

Synaptic vesicles (SVs) form distinct pools at synaptic terminals, and this well-regulated separation is necessary for normal neurotransmission. However, how the SV cluster, in particular synaptic compartments, maintains normal neurotransmitter release remains a mystery. The presynaptic protein Neurexin (NRX) plays a significant role in synaptic architecture and function, and some evidence suggests that NRX is associated with neurological disorders, including autism spectrum disorders. However, the role of NRX in SV clustering is unclear. Here, using the neuromuscular junction at the 2-3 instar stages of Drosophila larvae as a model and biochemical imaging and electrophysiology techniques, we demonstrate that Drosophila NRX (DNRX) plays critical roles in regulating synaptic terminal clustering and release of SVs. We found that DNRX controls the terminal clustering and release of SVs by stimulating presynaptic F-actin. Furthermore, our results indicate that DNRX functions through the scaffold protein Scribble and the GEF protein DPix to activate the small GTPase Ras-related C3 Botulinum toxin substrate 1 (Rac1). We observed a direct interaction between the C-terminal PDZ-binding motif of DNRX and the PDZ domains of Scribble and that Scribble bridges DNRX to DPix, forming a DNRX-Scribble-DPix complex that activates Rac1 and subsequently stimulates presynaptic F-actin assembly and SV clustering. Taken together, our work provides important insights into the function of DNRX in regulating SV clustering, which could help inform further research into pathological neurexin-mediated mechanisms in neurological disorders such as autism.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Citoesqueleto de Actina/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Membrana/metabolismo , Junção Neuromuscular/metabolismo , Vesículas Sinápticas/metabolismo , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Animais Geneticamente Modificados , Moléculas de Adesão Celular Neuronais/química , Moléculas de Adesão Celular Neuronais/genética , Proteínas de Drosophila/agonistas , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Fenômenos Eletrofisiológicos , Deleção de Genes , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Larva/citologia , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/genética , Mutação , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Junção Neuromuscular/citologia , Junção Neuromuscular/crescimento & desenvolvimento , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas rac de Ligação ao GTP/agonistas , Proteínas rac de Ligação ao GTP/química , Proteínas rac de Ligação ao GTP/metabolismo
16.
PLoS Biol ; 13(4): e1002115, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25831426

RESUMO

In both vertebrates and invertebrates, photoreceptors' output is regulated by feedback signals from interneurons that contribute to several important visual functions. Although synaptic feedback regulation of photoreceptors is known to occur in Drosophila, many questions about the underlying molecular mechanisms and physiological implementation remain unclear. Here, we systematically investigated these questions using a broad range of experimental methods. We isolated two Ih mutant fly lines that exhibit rhythmic photoreceptor depolarization without light stimulation. We discovered that Ih channels regulate glutamate release from amacrine cells by modulating calcium channel activity. Moreover, we showed that the eye-enriched kainate receptor (EKAR) is expressed in photoreceptors and receives the glutamate signal released from amacrine cells. Finally, we presented evidence that amacrine cell feedback regulation helps maintain light sensitivity in ambient light. Our findings suggest plausible molecular underpinnings and physiological effects of feedback regulation from amacrine cells to photoreceptors. These results provide new mechanistic insight into how synaptic feedback regulation can participate in network processing by modulating neural information transfer and circuit excitability.


Assuntos
Células Amácrinas/fisiologia , Retroalimentação , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/fisiologia , Células Fotorreceptoras de Invertebrados/fisiologia , Animais , Drosophila , Luz
17.
Biochim Biophys Acta Gen Subj ; 1862(3): 440-450, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29107812

RESUMO

BACKGROUND: The functions of autism-associated Neuroligins (Nlgs) are modulated by their post-translational modifications, such as proteolytic cleavage. A previous study has shown that there are different endogenous forms of DNlg3 in Drosophila, indicating it may undergo proteolytic processing. However, the molecular mechanism underlying DNlg3 proteolytic processing is unknown. Here, we report a novel proteolytic mechanism that is essential for DNlg3 maturation and function in the nervous system. METHODS: Molecular cloning, cell culture, immunohistochemistry, western blotting and genetic studies were employed to map the DNlg3 cleavage region, identify the protease and characterize the cleavage manner. Behavior analysis, immunohistochemistry and genetic manipulations were employed to study the functions of different DNlg3 forms in the nervous system and neuromuscular junction (NMJs). RESULTS: Tumor necrosis factor α-converting enzyme (TACE) cleaved DNlg3 exclusively at its extracellular acetylcholinesterase-like domain to generate the N-terminal fragment and the short membrane-anchored fragment (sDNlg3). DNlg3 was constitutively processed in an activity-independent manner. Interestingly, DNlg3 was cleaved intracellularly in the Golgi apparatus before it arrived at the cell surface, a unique cleavage mechanism that is distinct from 'conventional' ectodomain shedding of membrane proteins, including rodent Nlg1. Genetic studies showed that sDNlg3 was essential for maintaining proper locomotor activity in Drosophila. CONCLUSIONS: Our results revealed a unique cleavage mechanism of DNlg3 and a neuron-specific role for DNlg3 maturation which is important in locomotor activity. GENERAL SIGNIFICANCE: Our study provides a new insight into a cleavage mechanism of Nlgs maturation in the nervous system.


Assuntos
Proteína ADAM17/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Processamento de Proteína Pós-Traducional , Proteína ADAM17/genética , Animais , Animais Geneticamente Modificados , Moléculas de Adesão Celular Neuronais/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/fisiologia , Técnicas de Inativação de Genes , Complexo de Golgi/metabolismo , Locomoção/fisiologia , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Neurônios/enzimologia , Especificidade de Órgãos , Fragmentos de Peptídeos/metabolismo , Domínios Proteicos
18.
Hum Mol Genet ; 24(16): 4599-614, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26002102

RESUMO

X chromosome-linked intellectual disability is a common developmental disorder, and mutations of the polyglutamine-binding protein 1 (PQBP1) gene have been linked to this disease. In addition to existing in the nucleus as a splicing factor, PQBP1 is also found in cytoplasmic RNA granules, where it associates with RNA-binding proteins. However, the roles of cytoplasmic PQBP1 are largely unknown. Here, we show that the Drosophila homolog of PQBP1 (dPQBP1) is present in the cytoplasm of photoreceptor cells, and its loss results in defective rhabdomere morphogenesis, which is due to impaired Chaoptin translation. We also show that dPQBP1 regulates mRNA translation by interacting with dFMR1, which binds to specific mRNAs and facilitates their assembly into translating ribosomes, a function that is conserved for human PQBP1 and FMRP. Our findings reveal the conserved function of PQBP1 in mRNA translation and provide molecular insights into the pathogenic mechanisms underlying Renpenning syndrome.


Assuntos
Proteínas de Drosophila/biossíntese , Glicoproteínas de Membrana/biossíntese , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Cromossomos Humanos X/genética , Cromossomos Humanos X/metabolismo , Proteínas de Ligação a DNA , Proteínas de Drosophila/genética , Drosophila melanogaster , Doenças Genéticas Ligadas ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/metabolismo , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/metabolismo , Glicoproteínas de Membrana/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , RNA Mensageiro/genética
19.
J Biol Chem ; 290(29): 17656-17667, 2015 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-25953899

RESUMO

Although Neurexins, which are cell adhesion molecules localized predominantly to the presynaptic terminals, are known to regulate synapse formation and synaptic transmission, their roles in the regulation of synaptic vesicle release during repetitive nerve stimulation are unknown. Here, we show that nrx mutant synapses exhibit rapid short term synaptic depression upon tetanic nerve stimulation. Moreover, we demonstrate that the intracellular region of NRX is essential for synaptic vesicle release upon tetanic nerve stimulation. Using a yeast two-hybrid screen, we find that the intracellular region of NRX interacts with N-ethylmaleimide-sensitive factor (NSF), an enzyme that mediates soluble NSF attachment protein receptor (SNARE) complex disassembly and plays an important role in synaptic vesicle release. We further map the binding sites of each molecule and demonstrate that the NRX/NSF interaction is critical for both the distribution of NSF at the presynaptic terminals and SNARE complex disassembly. Our results reveal a previously unknown role of NRX in the regulation of short term synaptic depression upon tetanic nerve stimulation and provide new mechanistic insights into the role of NRX in synaptic vesicle release.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/fisiologia , Depressão Sináptica de Longo Prazo , Proteínas Sensíveis a N-Etilmaleimida/metabolismo , Sinapses/fisiologia , Sequência de Aminoácidos , Animais , Moléculas de Adesão Celular Neuronais/análise , Moléculas de Adesão Celular Neuronais/genética , Drosophila/genética , Proteínas de Drosophila/análise , Proteínas de Drosophila/genética , Deleção de Genes , Dados de Sequência Molecular , Proteínas Sensíveis a N-Etilmaleimida/análise , Plasticidade Neuronal , Mapas de Interação de Proteínas , Estrutura Terciária de Proteína , Sinapses/genética , Vesículas Sinápticas/genética , Vesículas Sinápticas/fisiologia
20.
J Neurosci ; 34(8): 2785-96, 2014 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-24553921

RESUMO

Fatty acid metabolism plays an important role in brain development and function. Mutations in acyl-CoA synthetase long-chain family member 4 (ACSL4), which converts long-chain fatty acids to acyl-CoAs, result in nonsyndromic X-linked mental retardation. ACSL4 is highly expressed in the hippocampus, a structure critical for learning and memory. However, the underlying mechanism by which mutations of ACSL4 lead to mental retardation remains poorly understood. We report here that dAcsl, the Drosophila ortholog of ACSL4 and ACSL3, inhibits synaptic growth by attenuating BMP signaling, a major growth-promoting pathway at neuromuscular junction (NMJ) synapses. Specifically, dAcsl mutants exhibited NMJ overgrowth that was suppressed by reducing the doses of the BMP pathway components, accompanied by increased levels of activated BMP receptor Thickveins (Tkv) and phosphorylated mothers against decapentaplegic (Mad), the effector of the BMP signaling at NMJ terminals. In addition, Rab11, a small GTPase involved in endosomal recycling, was mislocalized in dAcsl mutant NMJs, and the membrane association of Rab11 was reduced in dAcsl mutant brains. Consistently, the BMP receptor Tkv accumulated in early endosomes but reduced in recycling endosomes in dAcsl mutant NMJs. dAcsl was also required for the recycling of photoreceptor rhodopsin in the eyes, implying a general role for dAcsl in regulating endocytic recycling of membrane receptors. Importantly, expression of human ACSL4 rescued the endocytic trafficking and NMJ phenotypes of dAcsl mutants. Together, our results reveal a novel mechanism whereby dAcsl facilitates Rab11-dependent receptor recycling and provide insights into the pathogenesis of ACSL4-related mental retardation.


Assuntos
Proteínas Morfogenéticas Ósseas/fisiologia , Coenzima A Ligases/farmacologia , Sinapses/efeitos dos fármacos , Vesículas Transportadoras/efeitos dos fármacos , Animais , Western Blotting , Proteínas Morfogenéticas Ósseas/efeitos dos fármacos , Drosophila , Proteínas de Drosophila/metabolismo , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Microscopia Eletrônica , Músculos/metabolismo , Mutação/genética , Mutação/fisiologia , Junção Neuromuscular/efeitos dos fármacos , Células Fotorreceptoras de Invertebrados/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Superfície Celular/metabolismo , Receptores Pré-Sinápticos/efeitos dos fármacos , Rodopsina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Frações Subcelulares/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA