Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Food Chem ; 450: 139195, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-38615525

RESUMO

The characterization of structure of organic salts in complex mixtures has been a difficult problem in analytical chemistry. In the analysis of Scutellariae Radix (SR), the pharmacopoeia of many countries stipulates that the quality control component is baicalin (≥9% by high performance liquid chromatography (HPLC)). The component with highest response in SR was also baicalin detected by liquid chromatography-mass spectrometry (LC-MS). However, in the attenuated total reflection Fourier transform infrared spectroscopy, the carbonyl peak of glucuronic acid of baicalin did not appear in SR. The results of element analysis, time of flight secondary ion mass spectrometry, matrix assisted laser desorption ionization mass spectrometry and solid-state nuclear magnetic resonance all supported the existence of baicalin magnesium salt. Based on this, this study proposes an analysis strategy guided by infrared spectroscopy and combined with multi-spectroscopy techniques to analyze the structure of organic salt components in medicinal plant. It is meaningful for the research of mechanisms, development of new drugs, and quality control.


Assuntos
Plantas Medicinais , Plantas Medicinais/química , Espectroscopia de Infravermelho com Transformada de Fourier , Cromatografia Líquida de Alta Pressão , Flavonoides/química , Flavonoides/análise , Scutellaria baicalensis/química , Espectroscopia de Ressonância Magnética , Sais/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas , Extratos Vegetais/química , Estrutura Molecular
2.
Int J Biol Macromol ; 265(Pt 2): 131044, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38518933

RESUMO

As a result of the spontaneous movement of molecules, liquid-liquid biopolymer segregative phase separation takes place in an aqueous solution. The efficacy of this type of separation can be optimized under conditions where variables such as pH, temperature, and molecular concentrations have minimal impact on its dynamics. Recently, interest in the applications of biopolymers and their segregative phase separation-associated molecular stratification has increased, particularly in the food industry, where these methods permit the purification of specific particles and the embedding of microcapsules. The present review offers a comprehensive examination of the theoretical mechanisms that regulate the liquid-liquid biopolymers aqueous solution segregative phase separation, the factors that may exert an impact on this procedure, and the importance of this particular separation method in the context of food science. These discussion points also address existing difficulties and future possibilities related to the use of segregative phase separation in food applications. This highlights the potential for the design of novel functional foods and the enhancement of food properties.


Assuntos
Separação de Fases , Água , Biopolímeros/química , Água/química , Soluções , Temperatura
3.
Int J Biol Macromol ; 272(Pt 1): 132796, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38823740

RESUMO

Core-shell structures exhibit a number of distinct absorptive properties that make them attractive tools for use in a range of industrial contexts including pharmaceuticals, biotechnology, cosmetics, and food/agriculture. Several recent studies have focused on the development and fabrication of zein-based core-shell structures for a range of functional material deliveries. However, no recent review article has evaluated the fabrication of such core-shell structures for food-based applications. In this paper, we therefore survey current approaches to fabricating different zein-based platforms including particles, fibers, films, and hydrogels that have appeared in a variety of functionally relevant applications. In addition, we highlight certain challenges and future research directions in this field, thereby providing a novel perspective on zein-based core-shell structures.


Assuntos
Hidrogéis , Zeína , Zeína/química , Hidrogéis/química
4.
Food Chem ; 446: 138814, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38402771

RESUMO

In this study, extrusion method was employed to fabricate alginate-zein core-shell microcapsules loaded with buckwheat honey by dropping alginate and buckwheat honey mixture solution into a 70.0 % zein ethanol solution(v/v) containing 5.0 % CaCl2 solution (wt%). The microcapsules were constructed by two parts: 1) the formation of hydrophilic beads through the crosslinking of alginate chains with Ca2+; 2) the introduction of alginate beads into the aqueous zein ethanol solution which decreased the ethanol concentration, prompting the precipitation of zein and the deposition of zein nanoparticles onto the surfaces of alginate beads. Comparing with the alginate beads, the prepared microcapsules not only possessed better water-holding capacity, but also achieved controlled release of buckwheat honey. Importantly, the microcapsules significantly retained the antioxidant activity of the buckwheat honey. Therefore, this innovative method for fabricating alginate-zein core-shell microcapsules can suggest a promising approach to broaden the application of buckwheat honey in the food field.


Assuntos
Fagopyrum , Mel , Zeína , Cápsulas , Alginatos , Preparações de Ação Retardada , Água , Etanol
5.
Foods ; 13(12)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38928883

RESUMO

Recently, phosphorylation has been applied to peptides to enhance their physiological activity, taking advantage of its modification benefits and the extensive study of functional peptides. In this study, water-soluble peptides (WSPs) of sea cucumber ovum were phosphorylated in order to improve the latter's calcium binding capacity and calcium absorption. Enzymatic hydrolysis methods were screened via ultraviolet-visible absorption spectroscopy (UV-Vis), the fluorescence spectrum, and calcium chelating ability. Phosphorylated water-soluble peptides (P-WSPs) were characterized via high-performance liquid chromatography, the circular dichroism spectrum, Fourier transform infrared spectroscopy (FTIR), UV-Vis spectroscopy, surface hydrophobicity, and fluorescence spectroscopy. The phosphorus content, calcium chelation rate and absorption rate were investigated. The results demonstrated that phosphorylation enhanced the calcium chelating capacity of WSPs, with the highest capacity reaching 0.96 mmol/L. Phosphate ions caused esterification events, and the carboxyl, amino, and phosphate groups of WSPs and P-WSPs interacted with calcium ions to form these bonds. Calcium-chelated phosphorylated water-soluble peptides (P-WSPs-Ca) demonstrated outstanding stability (calcium retention rates > 80%) in gastrointestinal processes. Our study indicates that these chelates have significant potential to develop into calcium supplements with superior efficacy, bioactivity, and stability.

6.
Food Chem X ; 23: 101557, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-39007120

RESUMO

Hydrogels formed by self-assembling peptides with low toxicity and high biocompatibility have been widely used in food and biomedical fields. Seafood contains rich protein resources and is also one of the important sources of natural bioactive peptides. The self-assembled peptides in seafood have good functional activity and are very beneficial to human health. In this review, the sequence of seafood self-assembly peptide was introduced, and the preparation, screening, identification and characterization. The rule of self-assembled peptides was elucidated from amino acid sequence composition, amino acid properties (hydrophilic, hydrophobic and electric), secondary structure, interaction and peptide properties (hydrophilic and hydrophobic). It was introduced that the application of hydrogels formed by self-assembled peptides, which lays a theoretical foundation for the development of seafood self-assembled peptides in functional foods and the application of biological materials.

7.
Food Chem X ; 21: 101196, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38370305

RESUMO

Starch, a natural polymer, has a complex internal structure. Some starches, such as corn and wheat starches, have well-developed surface pores and internal channels. These channel structures are considered crucial in connecting surface stomata and internal cavities and have adequate space for loading guest molecules. After processing or modification, the starch-containing channel structures can be used for food and drug encapsulation and delivery. This article reviews the formation and determination of starch internal channels, and the influence of different factors (such as starch species and processing conditions) on the channel structure. It also discusses relevant starch preparation methods (physical, chemical, enzymatic, and synergistic), and the encapsulation effect of starch containing internal channels on different substances. In addition, the role of internal channels in regulating the starch digestion rate and other aspects is also discussed here. This review highlights the significant multifunctional applications of starch with a channel structure.

8.
Food Chem X ; 21: 101130, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38292679

RESUMO

This research aimed to construct an emulsifier by the Maillard reaction at various times using cod fish skin collagen peptide (CSCP) and ι-carrageenan (ι-car) to stabilize an Antarctic krill oil (AKO) emulsion. This emulsion was then investigated for physicochemical stability, oxidative stability, and gastrointestinal digestibility. The emulsion stability index and emulsifying activity index of Maillard reaction products (MRPs) were increased by 36.32 % and 66.30 %, respectively, at the appropriate graft degree (25.58 %) compared with the mixture of ι-car and CSCP. In vitro digestibility suggested the higher release of free fatty acids (FFAs) of 10d-MRPs-AKO-emulsion, and the highest bioavailability of AST in 10d-MRPs-AKO was found to be 28.48 %. The findings of this study showed the potential of MRPs to improve peptide function, serve as delivery vehicles for bioactive chemicals, and possibly serve as a valuable emulsifier to be used in the food industry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA