Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Int J Biol Macromol ; 278(Pt 3): 134969, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39179060

RESUMO

The reactions involving enzymes are significantly influenced by various environmental factors. Clarity of how the activity and structure of proteases impact their function is crucial for more efficient application of enzymes as a tool. The impact of temperature, pH, and ionic strength on changes in protease activity, secondary structure, and protein conformation during enzymatic hydrolysis were investigated in this study. The enzymatic activity and secondary structure of acid-base protease were found to undergo significant modifications under different physical conditions, as demonstrated by UV spectrophotometry and FTIR spectroscopy analysis. Specifically, variations in α-helix and ß-fold content were observed to correlate with changes in enzyme activity. Molecular simulation analysis revealed that physical conditions have varying effects on the protease, particularly influencing enzyme activity and secondary structure. Evaluation of the proteases indicated alterations in both enzyme activity and structure. This treatment selectively hydrolyzed ß-lactoglobulin and reduced sensitization. These findings offer novel perspectives on the functionalities and regulatory mechanisms of proteases, as well as potential industrial applications.


Assuntos
Peptídeo Hidrolases , Estrutura Secundária de Proteína , Hidrólise , Peptídeo Hidrolases/química , Peptídeo Hidrolases/metabolismo , Concentração de Íons de Hidrogênio , Temperatura , Lactoglobulinas/química , Lactoglobulinas/metabolismo , Concentração Osmolar , Simulação de Dinâmica Molecular
2.
Neuropharmacology ; 260: 110119, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39197819

RESUMO

Perioperative neurocognitive disorders (PND) are intractable, indistinct, and considerably diminish the postoperative quality of life of patients. It has been proved that Peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) was involved in neurodegenerative diseases by regulating mitochondrial biogenesis. The underlying mechanisms of PGC-1α and Nod-like receptor pyrin domain-containing protein 3 (NLRP3) inflammasome in PND are not well understood. In this study, we constructed a model of laparotomy in aged mice, and then examined the cognition changes with novel object recognition tests and fear condition tests. The protein levels of PGC-1α and NLRP3 in the hippocampus were detect after surgery. Our results showed that NLRP3 and downstream PI3K/AKT pathway expressions were augmented in the hippocampus after surgery, whereas, the expressions of PGC-1α/estrogen-related receptor α (ERRα)/Unc-51-like autophagy activating kinase 1 (ULK1) pathway were diminished after surgery. In addition, we found that NLRP3 was mainly co-localized with neurons in the hippocampus, and synaptic-related proteins were reduced after surgery. At the same time, transmission electron microscopy (TEM) showed that mitochondria were impaired after surgery. Pharmacological treatment of MCC950, a selective NLRP3 inhibitor, effectively alleviated PND. Activation of PGC-1α with ZLN005 significantly ameliorated PND by enhancing the PGC-1α/ERRα/ULK1 signaling pathway, and further suppressing NLRP3 activation. As a result, we conclude that suppression of the PGC-1α/ERRα/ULK1 signaling pathway is the primary mechanism of PND which caused mitochondrial dysfunction, and activated NLRP3 inflammasome and downstream PI3K/AKT pathway, eventually improved cognitive dysfunction.


Assuntos
Proteína Homóloga à Proteína-1 Relacionada à Autofagia , Hipocampo , Inflamassomos , Camundongos Endogâmicos C57BL , Mitocôndrias , Proteína 3 que Contém Domínio de Pirina da Família NLR , Transtornos Neurocognitivos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Receptores de Estrogênio , Transdução de Sinais , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Inflamassomos/metabolismo , Camundongos , Transdução de Sinais/fisiologia , Transdução de Sinais/efeitos dos fármacos , Hipocampo/metabolismo , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Mitocôndrias/metabolismo , Masculino , Receptores de Estrogênio/metabolismo , Transtornos Neurocognitivos/metabolismo , Transtornos Neurocognitivos/etiologia , Envelhecimento/metabolismo , Laparotomia/efeitos adversos , Sulfonamidas/farmacologia , Furanos , Indenos
3.
Neuroscience ; 505: 21-33, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36265757

RESUMO

Accumulating evidence suggests that neuroinflammation is the main mechanism in cognitive dysfunction and that brain-derived neurotrophic factor (BDNF) is involved in learning and memory by binding to tyrosine kinase B (TrkB) receptors. Herein, we tested the roles of the BDNF-TrkB signaling pathway and its downstream cascade in lipopolysaccharide (LPS) induced cognitive dysfunction in mice. Mice were treated with LPS (0.25 mg/kg) for 7 days, and learning and memory function was evaluated by the novel object recognition test (NORT). Western blotting was performed to elucidate roles of the BDNF-TrkB signaling pathway and its downstream cascades in LPS mice. The NORT showed that LPS induced learning and memory deficits in mice. The levels of IL-1ß, IL-6, and TNF-α in the serum and central nervous system decreased in LPS mice. In addition, LPS reduced the protein levels of BDNF, p-TrkB, Bcl-2, p-ERK1/2, p-CaMK2, p-CREB and p-GluR1 and increased the expression of Bax in the hippocampus and medial prefrontal cortex regions. In the entorhinal cortex, the protein levels of BDNF, p-TrkB, Bcl-2, p-CaMK2 and p-CREB were decreased, and the protein level of Bax was increased in LPS mice. Interestingly, 7,8-DHF alleviated these disorders in LPS mice and improved learning and memory function; however, the TrkB antagonist ANA12 effectively reversed effects of 7,8-DHF. Therefore, we conclude that the BDNF-TrkB signaling pathway and its downstream cascades disorders in different regions are main mechanisms of cognitive dysfunction, and 7,8-DHF maybe useful as a new treatment for preventing or treating cognitive dysfunction induced by neuroinflammation in neurodegenerative diseases.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Receptor trkB , Animais , Camundongos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Receptor trkB/metabolismo , Proteínas Tirosina Quinases/metabolismo , Lipopolissacarídeos/farmacologia , Doenças Neuroinflamatórias , Proteína X Associada a bcl-2/metabolismo , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/metabolismo , Transdução de Sinais , Hipocampo/metabolismo , Aprendizagem em Labirinto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA