Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Ther ; 31(5): 1346-1364, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-36635966

RESUMO

Acute lung injury (ALI) is still associated with high mortality. Growing evidence suggests that Club Cell Protein 16 (CC16) plays a protective role against ALI. However, the doses of recombinant CC16 (rCC16) used in preclinical studies are supraphysiological for clinical applications. Extracellular vesicles (EVs) are nanovesicles endogenously generated by mammalian cells. Our study demonstrated that CC16 is released via small EVs and EV-encapsulated CC16 (sEV-CC16) and has anti-inflammatory activities, which protect mice from lipopolysaccharide (LPS) or bacteria-induced ALI. Additionally, sEV-CC16 can activate the DNA damage repair signaling pathways. Consistent with this activity, we observed more severe DNA damage in lungs from Cc16 knockout (KO) than wild-type (WT) mice. Mechanistically, we elucidated that CC16 suppresses nuclear factor κB (NF-κB) signaling activation by binding to heat shock protein 60 (HSP60). We concluded that sEV-CC16 could be a potential therapeutic agent for ALI by inhibiting the inflammatory and DNA damage responses by reducing NF-κB signaling.


Assuntos
Lesão Pulmonar Aguda , NF-kappa B , Camundongos , Animais , NF-kappa B/metabolismo , Pulmão/metabolismo , Lesão Pulmonar Aguda/tratamento farmacológico , Transdução de Sinais , Anti-Inflamatórios/farmacologia , Lipopolissacarídeos/farmacologia , Mamíferos
2.
Am J Physiol Lung Cell Mol Physiol ; 324(5): L584-L595, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36880658

RESUMO

Mammalian genomes encode thousands of long noncoding RNAs (lncRNAs). LncRNAs are extensively expressed in various immune cells. The lncRNAs have been reported to be involved in diverse biological processes, including the regulation of gene expression, dosage compensation, and genomic imprinting. However, very little research has been conducted to explore how they alter innate immune responses during host-pathogen interactions. In this study, we found that a lncRNA, named long noncoding RNA, embryonic stem cells expressed 1 (Lncenc1), was strikingly increased in mouse lungs after gram-negative (G-) bacterial infection or exposure to lipopolysaccharides (LPS). Interestingly, our data indicated that Lncenc1 was upregulated in macrophages but not in primary epithelial cells (PECs) or polymorphonuclear leukocytes (PMN). The upregulation was also observed in human THP-1 and U937 macrophages. Besides, Lncenc1 was highly induced during ATP-induced inflammasome activation. Functionally, Lncenc1 showed proinflammatory effects in macrophages as demonstrated by increased expressions of cytokine and chemokines, as well as enhanced NF-κB promoter activity. Overexpression of Lncenc1 promoted the releases of IL-1ß and IL-18, and Caspase-1 activity in macrophages, suggesting a role in inflammasome activation. Consistently, knockdown of Lncenc1 inhibited inflammasome activation in LPS-treated macrophages. Moreover, knockdown of Lncenc1 using antisense oligo (ASO)-loaded exosomes (EXO) attenuated LPS-induced lung inflammation in mice. Similarly, Lncenc1 deficiency protects mice from bacteria-induced lung injury and inflammasome activation. Taken together, our work identified Lncenc1 as a modulator of inflammasome activation in macrophages during bacterial infection. Our study suggested that Lncenc1 could serve as a therapeutic target for lung inflammation and injury.


Assuntos
Pneumonia , RNA Longo não Codificante , Humanos , Animais , Camundongos , Inflamassomos/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Macrófagos/metabolismo , Pneumonia/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ativação de Macrófagos , Mamíferos/genética , Mamíferos/metabolismo
3.
Curr Issues Mol Biol ; 45(8): 6415-6431, 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37623224

RESUMO

Type 2 diabetes (T2D) is a serious health issue with increasing incidences worldwide. However, current medications have limitations due to side effects such as decreased appetite, stomach pain, diarrhea, and extreme tiredness. Here, we report the effect of fermented ice plant (FMC) in the T2M mouse model of db/db mice. FMC showed a greater inhibition of lipid accumulation compared to unfermented ice plant extract. Two-week oral administration with FMC inhibited body weight gain, lowered fasting blood glucose, and improved glucose tolerance. Serum parameters related to T2D including insulin, glycosylated hemoglobin, adiponectin, and cholesterols were improved as well. Histological analysis confirmed the protective effect of FMC on pancreas and liver destruction. FMC treatment significantly increased the expression and phosphorylation of IRS-1, PI3K, and AKT. Additionally, AMP-activated protein kinase phosphorylation and nuclear factor erythroid 2-related factor 2 were also increased in the liver tissues of db/db mice treated with FMC. Overall, our results indicate the anti-diabetic effect of FMC; therefore, we suggest that FMC may be useful as a therapeutic agent for T2D.

4.
Ann Surg ; 278(6): e1277-e1288, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37154066

RESUMO

OBJECTIVE: Injured tissue predisposes the subject to local and systemic infection. We studied injury-induced immune dysfunction seeking novel means to reverse such predisposition. BACKGROUND: Injury mobilizes primitive "DANGER signals" [danger-associated molecular patterns (DAMPs)] activating innate immunocyte (neutrophils, PMN) signaling and function. Mitochondrial formyl peptides activate G -protein coupled receptors (GPCR) like formyl peptide receptor-1. Mitochondrial DNA and heme activate toll-like receptors (TLR9 and TLR2/4). GPCR kinases (GRKs) can regulate GPCR activation. METHODS: We studied human and mouse PMN signaling elicited by mitochondrial DAMPs (GPCR surface expression; protein phosphorylation, or acetylation; Ca 2+ flux) and antimicrobial functions [cytoskeletal reorganization, chemotaxis (CTX), phagocytosis, bacterial killing] in cellular systems and clinical injury samples. Predicted rescue therapies were assessed in cell systems and mouse injury-dependent pneumonia models. RESULTS: Mitochondrial formyl peptides activate GRK2, internalizing GPCRs and suppressing CTX. Mitochondrial DNA suppresses CTX, phagocytosis, and killing through TLR9 through a novel noncanonical mechanism that lacks GPCR endocytosis. Heme also activates GRK2. GRK2 inhibitors like paroxetine restore functions. GRK2 activation through TLR9 prevented actin reorganization, implicating histone deacetylases (HDACs). Actin polymerization, CTX, bacterial phagocytosis, and killing were also rescued, therefore, by the HDAC inhibitor valproate. Trauma repository PMN showed GRK2 activation and cortactin deacetylation, which varied with severity and was most marked in patients developing infections. Either GRK2 or HDAC inhibition prevented loss of mouse lung bacterial clearance, but only the combination rescued clearance when given postinjury. CONCLUSIONS: Tissue injury-derived DAMPs suppress antimicrobial immunity through canonical GRK2 activation and a novel TLR-activated GRK2-pathway impairing cytoskeletal organization. Simultaneous GRK2/HDAC inhibition rescues susceptibility to infection after tissue injury.


Assuntos
Anti-Infecciosos , Neutrófilos , Humanos , Camundongos , Animais , Neutrófilos/metabolismo , Actinas/metabolismo , Receptor Toll-Like 9/metabolismo , DNA Mitocondrial/metabolismo , Peptídeos/metabolismo , Heme/metabolismo
5.
Int J Mol Sci ; 24(10)2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37240117

RESUMO

The enormous library of natural products and herbal medicine prescriptions presents endless research avenues. However, the lack of research evidence and trials on cancer-induced cachexia limit the therapeutic potential of natural products. Cancer-induced cachexia is a systemic wasting syndrome characterized by continuous body weight loss with skeletal muscle and adipose tissue atrophy. Cancer cachexia is a problem in itself and reduces the quality of life by lessening the treatment efficacy of anticancer drugs. This review summarizes single natural product extracts for cancer-induced cachexia, not compounds derived from natural products and herbal medicine prescriptions. This article also discusses the effect of natural products on cachexia induced by anticancer drugs and the role of AMPK in cancer-induced cachexia. The article included the mice model used in each experiment to encourage researchers to utilize animal models for research on cancer-induced cachexia in the future.


Assuntos
Antineoplásicos , Neoplasias , Camundongos , Animais , Caquexia/tratamento farmacológico , Caquexia/etiologia , Caquexia/patologia , Qualidade de Vida , Neoplasias/complicações , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Músculo Esquelético/patologia , Antineoplásicos/farmacologia , Extratos Vegetais/farmacologia , Atrofia Muscular/patologia
6.
Am J Respir Cell Mol Biol ; 67(6): 695-707, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36066909

RESUMO

Cigarette smoke (CS) is considered a major risk factor for chronic obstructive pulmonary disease (COPD) that is currently the third leading cause of death in the United States. Studies have indicated that patients with COPD have elevated blood low-density lipoprotein levels, which may contribute to the dysregulation of lipid metabolism. Accumulating data show that microRNAs (miRNAs) are involved in various human diseases. However, the role of microRNAs in the pathogenesis of COPD remains poorly defined. In this study, we found that miR-103a expression was significantly reduced in alveolar macrophages from smokers and patients with COPD versus that in alveolar macrophages from nonsmokers. Our data indicated that reactive oxygen species negatively regulate miR-103a in macrophages. Functionally, miR-103a modulates the expressions of genes involved in lipid metabolism and directly targets low-density lipoprotein receptors in macrophages. Furthermore, overexpression of miR-103a suppressed the accumulation of lipid droplets and reduced the reactive oxygen species, both in vitro and in vivo. Taken together, our findings indicate that downregulation of miR-103a contributes to cigarette smoke-induced lipid-laden macrophage formation and plays a critical role in lipid homeostasis in lung macrophages in the pathogenesis of COPD.


Assuntos
Fumar Cigarros , MicroRNAs , Doença Pulmonar Obstrutiva Crônica , Humanos , Fumar Cigarros/efeitos adversos , Espécies Reativas de Oxigênio , Doença Pulmonar Obstrutiva Crônica/metabolismo , Macrófagos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Nicotiana , Lipoproteínas LDL , Lipídeos
7.
Funct Integr Genomics ; 22(6): 1307-1313, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35931836

RESUMO

Osteoarthritis (OA) is the most common joint disorder worldwide and a leading cause of pain and disability. However, the pathogenesis of osteoarthritis has not been elucidated. Krüppel-like factor (KLF)-5 is involved in several biological processes, including inflammation and cell differentiation, but its role in OA has not been evaluated. In this study, we investigated the role of KLF-5 in chondrocyte differentiation. KLF-5 overexpression in chondrocytes induced a loss of type II collagen expression and sulfated proteoglycan synthesis at the transcriptional and translational levels. Based on immunofluorescence staining, the ectopic expression of KLF-5 reduced type II collagen expression. In contrast, with KLF-5-transfected cells, KLF-5 siRNA transfection-induced type II expression also blocked dedifferentiation caused by the overexpression of KLF-5. In zebra fish, KLF-5 reduced the sulfated proteoglycan synthesis of ceratobranchial cartilage. Our results suggest that KLF-5 plays a pivotal role in the dedifferentiation of rabbit articular cartilage and zebra fish, providing a basis for therapeutic strategy for osteoarthritis aimed at controlling cartilage destruction.


Assuntos
Condrócitos , Osteoartrite , Animais , Coelhos , Colágeno Tipo II/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Osteoartrite/genética , Fatores de Transcrição/metabolismo , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Fatores de Transcrição Kruppel-Like/genética , Proteoglicanas/metabolismo , Proteoglicanas/uso terapêutico , Células Cultivadas
8.
Chem Biodivers ; 19(9): e202200399, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35977918

RESUMO

Some bioactive derivatives of indeno[1,2-c]pyrazolones were synthesized through the reaction of phenylhydrazine, different aldehydes and indan-1,2,3-trione at room temperature in acetonitrile. Analytical and spectroscopic studies have confirmed the structural characteristics of the synthesized compounds. In addition, the target compounds were screened for the in-vitro antiproliferative properties against the B16F10 melanoma cancer cell lines by the standard MTT assay. The effect on inflammatory marker cyclooxygenase 2 and matrix metalloproteinase 2, 9 was also checked to determine the anti-inflammatory and anti-cell migratory properties of these compounds. The final compounds were also tested for their tyrosinase inhibitory activity. Among all compounds, screened for anticancer activity, three compounds 4e, 4f and 4h reduced the cell proliferation significantly comparable to that of the positive standard drug erlotinib (IC50 =418.9±1.54 µM) with IC50 values ranging from 20.72-29.35 µM. The compounds 4c-4h decreased the COX-2 expression whereas the MMP 2, 9 expressions were significantly reduced by 4a, 4b and 4h. This was confirmed by molecular docking studies, as 4e, 4f and 4h displayed good interactions with the active site of BRAF protein. The compounds 4b, 4f and 4h exhibited moderate tyrosinase inhibition effect as compared to α-MSH. Collectively, compound 4h can be considered as a candidate for further optimization in the development of anticancer therapies based on the results of biological investigations in this study.


Assuntos
Antineoplásicos , Pirazolonas , Acetonitrilas/farmacologia , Aldeídos/farmacologia , Anti-Inflamatórios/farmacologia , Antineoplásicos/química , Proliferação de Células , Ciclo-Oxigenase 2/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Cloridrato de Erlotinib/farmacologia , Indanos/farmacologia , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 2 da Matriz/farmacologia , Simulação de Acoplamento Molecular , Estrutura Molecular , Monofenol Mono-Oxigenase/metabolismo , Fenil-Hidrazinas/farmacologia , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas Proto-Oncogênicas B-raf/farmacologia , Pirazolonas/farmacologia , Relação Estrutura-Atividade , alfa-MSH/farmacologia
9.
Bioorg Med Chem ; 41: 116222, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34058664

RESUMO

In this research work, we have designed and synthesized some biologically useful of 1,3,4-Oxadiazoles. The structural interpretation of the synthesized compounds has been validated by using FT-IR, LC-MS, HRMS, 1H NMR and 13C NMR techniques. Moreover, the in-vitro mushroom tyrosinase inhibitory potential of the target compounds was assessed. The in-vitro study reveals that, all compounds demonstrate an excellent tyrosinase inhibitory activity. Especially, 2-(5-(2-methoxyphenyl)-1,3,4-oxadiazol-2-ylthio)-N-phenylacetamide (IC50 = 0.003 ± 0.00 µM) confirms much more significant potent inhibition activity compared with standard drug kojic acid (IC50 = 16.83 ± 1.16 µM). Subsequently, the most potent five oxadiazole compounds were screened for cytotoxicity study against B16F10 melanoma cells using an MTT assay method. The survival rate for the most potent compound was more pleasant than other compounds. Furthermore, the western blot results proved that the most potent compound considerably decreased the expression level of tyrosinase at 50 µM (P < 0.05). The molecular docking investigation exposed that the utmost potent compound displayed the significant interactions pattern within the active region of the tyrosinase enzyme and which might be responsible for the decent inhibitory activity towards the enzyme. A molecular dynamic simulation experiment was presented to recognize the residual backbone stability of protein structure.


Assuntos
Antineoplásicos/farmacologia , Melaninas/antagonistas & inibidores , Monofenol Mono-Oxigenase/antagonistas & inibidores , Oxidiazóis/farmacologia , Preparações Clareadoras de Pele/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Melanoma/tratamento farmacológico , Modelos Moleculares , Simulação de Acoplamento Molecular , Oxidiazóis/síntese química , Oxidiazóis/química , Conformação Proteica
10.
Mol Divers ; 25(4): 2089-2106, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32399854

RESUMO

We have created a novel series of mushroom tyrosinase inhibitors with 1,2,4-triazole as fundamental skeleton. The target compound 1,2,4-triazol-3-ylthio)-N-phenyl acetamide derivatives 9(a-l) were synthesized by the reaction of 4- and 5-substituted 1,2,4-triazole-3-thiol derivatives 6(a-c) with 2-chloro-N-sub/un-substituted phenyl acetamide derivatives 8(a-d) under basic condition. By using the analytical techniques for instance, FTIR, LC-MS, 1H NMR and 13C NMR, the structural verification was evaluated. The novel series of the target compounds 9(a-l) has been scanned for biological activity (mushroom tyrosinase inhibition potential) which demonstrates adequate results. Interestingly, compound 9k (IC50 = 0.0048 ± 0.0016 µM) exhibits 3500 times more activity compared with standard drug kojic acid (IC50 = 16.8320 ± 1.1600 µM) against mushroom tyrosinase inhibitor. Furthermore, the cytotoxicity experiment was carried out for the highly effective target compounds (9d, 9i, 9j and 9k) by using MTT assay method for A375 human melanoma cells to define the nontoxic performance of the most effective compounds ranging from 1 to 25 µM. Furthermore, the molecular docking study delivers the thought concerning the interface of the ligand with an enzyme. Also, the dynamic simulation was accomplished for compound 9k to govern the plausible binding model.


Assuntos
Monofenol Mono-Oxigenase
11.
Int J Mol Sci ; 22(21)2021 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-34768890

RESUMO

Gram-negative (G-) bacteria are the leading cause of hospital-acquired pneumonia in the United States. The devastating damage caused by G- bacteria results from the imbalance of bactericidal effects and overwhelming inflammation. Despite decades of research, the underlying mechanisms by which runaway inflammation is developed remain incompletely understood. Clara Cell Protein 16 (CC16), also known as uteroglobin, is the major protein secreted by Clara cells and the most abundant protein in bronchoalveolar lavage fluid (BALF). However, the regulation and functions of CC16 during G- bacterial infection are unknown. In this study, we aimed to assess the regulation of CC16 in response to Klebsiella pneumoniae (K. pneu) and to investigate the role of CC16 in bronchial epithelial cells. After K. pneu infection, we found that CC16 mRNA expression was significantly decreased in bronchial epithelial cells. Our data also showed that K. pneu infection upregulated cytokine and chemokine genes, including IL-1ß, IL-6, and IL-8 in BEAS-2B cells. Endogenously overexpressed CC16 in BEAS-2B cells provided an anti-inflammatory effect by reducing these markers. We also observed that endogenous CC16 can repress NF-κB reporter activity. In contrast, the recombinant CC16 (rCC16) did not show an anti-inflammatory effect in K. pneu-infected cells or suppression of NF-κB promoter activity. Moreover, the overexpression of CC16 reduced reactive oxygen species (ROS) levels and protected BEAS-2B cells from K. pneu-induced apoptosis.


Assuntos
Inflamação/metabolismo , Pneumonia Bacteriana/metabolismo , Uteroglobina , Apoptose , Brônquios/citologia , Brônquios/microbiologia , Líquido da Lavagem Broncoalveolar/química , Citocinas/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Imunidade Inata , Klebsiella pneumoniae , Pulmão/microbiologia , Pulmão/patologia , NF-kappa B/metabolismo , Uteroglobina/genética , Uteroglobina/metabolismo
12.
Molecules ; 26(22)2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34833904

RESUMO

We observed an unusual formation of four-coordinate boron(III) complexes from the reaction of 1-(2-pyridinyl)-5-pyrazolone derivatives with arylboronic acids in the basic media. The exact mechanism is not clear; however, the use of unprotected boronic acid and the presence of a bidentate ligand appeared to be the key structural requirements for the transformation. The results suggest that base-promoted disproportionation of arylboronic acid with the assistance of the [N,O]-bidentate ligation of 1-(2-pyridinyl)-5-pyrazolone should take place and facilitate the formation of pyrazole diarylborinate. Experiments to obtain a deeper understanding of its mechanism are currently underway.

13.
Cell Biol Int ; 44(10): 2153-2162, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32706497

RESUMO

Nitric oxide (NO) and reactive oxygen species (ROS) have been shown to be linked with numerous diseases, including osteoarthritis (OA). Our study aimed to examine the effect of simvastatin on NO- or ROS-induced cyclooxygenase-2 (COX-2) expression in OA. Simvastatin has attracted considerable attention since the discovery of its pharmacological effects on different pathogenic processes, including inflammation. Here, we report that simvastatin treatment blocked sodium nitroprusside (SNP)- and interleukin 1 beta (IL-1ß)-induced COX-2 production. In addition, simvastatin attenuated SNP-induced NO production and IL-1ß-induced ROS generation. Treatment with simvastatin prevented SNP- and IL-1ß-induced nuclear factor kappa B (NF-κB) activity. Inhibiting NO production and ROS generation using N-acetylcysteine (NAC) and NG-monomethyl- l-arginine ( l-NMMA), respectively, accelerated the influence of simvastatin on NF-κB activity. In addition, NAC blocked SNP and simvastatin-mediated COX-2 production and NF-κB activity but did not alter IL-1ß and simvastatin-mediated COX-2 expression. l-NMMA treatment also abolished IL-1ß-mediated COX-2 expression and NF-κB activation, whereas SNP and simvastatin-mediated COX-2 expression were not altered compared with the levels in the SNP and simvastatin-treated cells. Our findings suggested that simvastatin blocks COX-2 expression by inhibiting SNP-induced NO production and IL-1ß-induced ROS generation by blocking the NF-κB pathway.


Assuntos
Ciclo-Oxigenase 2/metabolismo , NF-kappa B/metabolismo , Osteoartrite/tratamento farmacológico , Sinvastatina/farmacologia , Animais , Células Cultivadas , Condrócitos , Interleucina-1beta/farmacologia , Óxido Nítrico/metabolismo , Nitroprussiato/farmacologia , Osteoartrite/induzido quimicamente , Coelhos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
14.
Int J Mol Sci ; 21(21)2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-33105556

RESUMO

CCN1 (cysteine-rich 61, connective tissue growth factor, and nephroblastoma-1), previously named CYR61 (cysteine-rich angiogenic inducer 61) belongs to the CCN family of matricellular proteins. CCN1 plays critical roles in the regulation of proliferation, differentiation, apoptosis, angiogenesis, and fibrosis. Recent studies have extensively characterized the important physiological and pathological roles of CCN1 in various tissues and organs. In this review, we summarize both basic and clinical aspects of CCN1 in pulmonary diseases, including acute lung injury (ALI), chronic obstructive pulmonary disease (COPD), lung fibrosis, pulmonary arterial hypertension (PAH), lung infection, and lung cancer. We also emphasize the important challenges for future investigations to better understand the CCN1 and its role in physiology and pathology, as well as the questions that need to be addressed for the therapeutic development of CCN1 antagonists in various lung diseases.


Assuntos
Proteína Rica em Cisteína 61/fisiologia , Pneumopatias/etiologia , Lesão Pulmonar Aguda/etiologia , Displasia Broncopulmonar/etiologia , Humanos , Neoplasias Pulmonares/etiologia , Doença Pulmonar Obstrutiva Crônica/etiologia
15.
Molecules ; 25(9)2020 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-32349276

RESUMO

Pancreatic cancer (PC) is one of the most severe cancers, and its incidence and mortality rates have steadily increased in the past decade. In this study, we demonstrate the effect of Angelica gigas Nakai extract on pancreatic ductal adenocarcinoma cells. We prepared A. gigas Nakai ethanol extract (AGE) using roots of A. gigas Nakai and detected its active compound decursin from AGE by ultra-performance liquid chromatography analysis. AGE and decursin significantly decreased viability and colony formation of PANC-1 and MIA PaCa-2 cells. AGE and decursin induced G0/G1 phase arrest through downregulation of cyclin D1 and cyclin-dependent kinase 4 (CDK4). Caspase-3-dependent apoptosis of PANC-1 cells was promoted by AGE and decursin. Additionally, nontoxic concentrations of AGE and decursin treatment could suppress matrix metalloproteinase (MMP)-2 and MMP-9 expression and activity by inhibiting p38 phosphorylation. Taken together, this study demonstrates that AGE and decursin have potential properties to be considered in PC treatment.


Assuntos
Angelica/química , Antineoplásicos/farmacologia , Benzopiranos/farmacologia , Butiratos/farmacologia , Neoplasias Pancreáticas/tratamento farmacológico , Extratos Vegetais/farmacologia , Raízes de Plantas/química , Apoptose/efeitos dos fármacos , Benzopiranos/química , Butiratos/química , Caspase 3/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Ciclina D1/metabolismo , Quinase 4 Dependente de Ciclina/metabolismo , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Humanos , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Neoplasias Pancreáticas/metabolismo , Fosforilação , Extratos Vegetais/análise , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
16.
Exp Cell Res ; 346(2): 198-205, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27475840

RESUMO

Statins are competitive inhibitors of hydroxy-methyl-glutaryl Coenzyme A (HMG-CoA) reductase, a key enzyme involved in the conversion of HMG-CoA to the cholesterol precursor mevalonate. Some statins, such as simvastatin (simvastatin), have been shown to have anti-cancer and anti-inflammatory effects, reducing cartilage degradation in osteoarthritic rabbits in vivo. However, the regulatory mechanisms undergirding simvastatin mediated chondrocyte differentiation have not been well elucidated. Thus, we investigated the action and mechanism of simvastatin on differentiation of rabbit articular chondrocytes through western blot analyses, RT-PCR, and immunohistochemical (IHC) and immunofluorescence (IF) staining. Simvastatin treatment was found to induce type II collagen expression and sulfated-proteoglycan synthesis in a dose- and time-dependent manner. Indeed, RT-PCR revealed increased expression of type II collagen on treatment with simvastatin. Both IHC and IF staining indicated differentiation of chondrocytes. Simvastatin treatment reduced activation of ERK-1/2 and stimulated activation of p38 kinase. Inhibition of ERK-1/2 with PD98059 enhanced simvastatin induced differentiation, whereas inhibition of p38 kinase with SB203580 inhibited simvastatin induced differentiation. Simvastatin treatment also inhibits loss of type II collagen in serial monolayer culture. Collectively, our results indicate that ERK-1/2 and p38 kinase regulate simvastatin-induced differentiation of chondrocytes in opposing manners. Thus, these findings suggest that simvastatin may be a potential therapeutic drug for osteoarthritis.


Assuntos
Cartilagem Articular/citologia , Diferenciação Celular/efeitos dos fármacos , Condrócitos/citologia , Condrócitos/enzimologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sinvastatina/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Condrócitos/efeitos dos fármacos , Colágeno Tipo II/metabolismo , Proteoglicanas/metabolismo , Coelhos , Sulfatos/metabolismo
17.
J Cell Biochem ; 117(9): 2067-77, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26852013

RESUMO

Although arctigenin (ARC) has been reported to have some pharmacological effects such as anti-inflammation, anti-cancer, and antioxidant, there have been no reports on the anti-obesity effect of ARC. The aim of this study is to investigate whether ARC has an anti-obesity effect and mediates the AMP-activated protein kinase (AMPK) pathway. We investigated the anti-adipogenic effect of ARC using 3T3-L1 pre-adipocytes and human adipose tissue-derived mesenchymal stem cells (hAMSCs). In high-fat diet (HFD)-induced obese mice, whether ARC can inhibit weight gain was investigated. We found that ARC reduced weight gain, fat pad weight, and triglycerides in HFD-induced obese mice. ARC also inhibited the expression of peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT/enhancer-binding protein alpha (C/EBPα) in in vitro and in vivo. Furthermore, ARC induced the AMPK activation resulting in down-modulation of adipogenesis-related factors including PPARγ, C/EBPα, fatty acid synthase, adipocyte fatty acid-binding protein, and lipoprotein lipase. This study demonstrates that ARC can reduce key adipogenic factors by activating the AMPK in vitro and in vivo and suggests a therapeutic implication of ARC for obesity treatment. J. Cell. Biochem. 117: 2067-2077, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Adipócitos/metabolismo , Adipogenia/efeitos dos fármacos , Gorduras na Dieta/efeitos adversos , Furanos/farmacologia , Lignanas/farmacologia , Obesidade , Redução de Peso/efeitos dos fármacos , Células 3T3-L1 , Animais , Gorduras na Dieta/farmacologia , Ativação Enzimática/efeitos dos fármacos , Humanos , Masculino , Células-Tronco Mesenquimais/metabolismo , Camundongos , Obesidade/induzido quimicamente , Obesidade/tratamento farmacológico , Obesidade/metabolismo
18.
Biosci Biotechnol Biochem ; 80(12): 2391-2400, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27494072

RESUMO

Acanthopanax henryi (Oliv.) Harms has been used in the treatment of arthritis, rheumatism, and abdominal pain. This study evaluated whether natural compounds isolated from the leaves of A. henryi (Oliv.) Harms could inhibit adipocyte differentiation by regulating transcriptional factors such as peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer-binding protein α (C/EBPα). AMP-activated protein kinase (AMPK) activity was also evaluated. Among the several compounds isolated from the leaves of A. henryi (Oliv.) Harms, Glycoside St-C1 and Glycoside St-E2 significantly decreased lipid accumulation and the expressions of PPARγ and C/EBPα. Glycoside St-C1 and Glycoside St-E2 were found to activate AMPK when they regulated PPARγ and C/EBPα. Results confirmed that Glycoside St-C1 and Glycoside St-E2 isolated from the leaves of A. henryi (Oliv.) Harms can inhibit adipogenesis through the AMPK-PPARγ-C/EBPα mechanism. Thus, this study suggests that Glycoside St-C1 and Glycoside St-E2 have a therapeutic effect due to activation of the AMPKα.


Assuntos
Adipogenia/efeitos dos fármacos , Eleutherococcus/química , Glicosídeos/isolamento & purificação , Glicosídeos/farmacologia , Folhas de Planta/química , Células 3T3-L1 , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Camundongos , PPAR gama/metabolismo
19.
Molecules ; 21(9)2016 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-27618887

RESUMO

Arctigenin (ARC) has been shown to have an anti-cancer effect in various cell types and tissues. However, there have been no studies concerning metastatic colorectal cancer (CRC). In this study, we investigated the anti-metastatic properties of ARC on colorectal metastasis and present a potential candidate drug. ARC induced cell cycle arrest and apoptosis in CT26 cells through the intrinsic apoptotic pathway via MAPKs signaling. In several metastatic phenotypes, ARC controlled epithelial-mesenchymal transition (EMT) through increasing the expression of epithelial marker E-cadherin and decreasing the expressions of mesenchymal markers; N-cadherin, vimentin, ß-catenin, and Snail. Moreover, ARC inhibited migration and invasion through reducing of matrix metalloproteinase-2 (MMP-2) and MMP-9 expressions. In an experimental metastasis model, ARC significantly inhibited lung metastasis of CT26 cells. Taken together, our study demonstrates the inhibitory effects of ARC on colorectal metastasis.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Furanos/farmacologia , Lignanas/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/secundário , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos BALB C , Metástase Neoplásica
20.
BMC Complement Altern Med ; 15: 196, 2015 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-26104582

RESUMO

BACKGROUND: Ixeris dentata Nakai has been used for the treatment of mithridatism, calculous, indigestion, pneumonia, hepatitis, and tumors in Korea, China, and Japan. However, the effect of a water extract of Ixeris dentata (ID) and its molecular mechanism on allergic inflammation has not been elucidated. In this study, we attempted to evaluate the effects of ID and its major compound caffeic acid on allergic inflammation in vivo and in vitro. METHODS: ID was applied to 2, 4-dinitrofluorobenzene (DNFB)-induced atopic dermatitis (AD)-like skin lesion mice and immune cell infiltration, cytokine production, and the activation of mitogen-activated protein kinases (MAPKs) were investigated. Moreover, the effect of ID on compound 48/80-induced anaphylactic shock was investigated in a mouse model. The human keratinocyte cell line (HaCaT cells) and human mast cells (HMC-1) were treated with ID or caffeic acid to investigate the effects on the production of chemokines and proinflammatory cytokines and on the activation of MAPKs. RESULTS: ID inhibited the serum levels of IgE and interleukin (IL)-1ß in DNFB-induced AD-like skin lesion mouse models and suppressed anaphylactic shock in the mouse models. ID and caffeic acid inhibited the production of chemokines and adhesion molecules in HaCaT cells. In addition, ID reduced the release of tumor necrosis factor-α and IL-8 via the inhibition of MAPKs phosphorylation in HMC-1 cells. CONCLUSIONS: These results suggest that ID is a potential therapeutic agent for allergic inflammatory diseases, including dermatitis.


Assuntos
Asteraceae/química , Ácidos Cafeicos/farmacologia , Inflamação/metabolismo , Extratos Vegetais/farmacologia , Transdução de Sinais , Animais , Linhagem Celular , Humanos , Camundongos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA