Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Adv Mater ; 36(5): e2304657, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37656897

RESUMO

Ultracompact chiral plasmonic nanostructures with unique chiral light-matter interactions are vital for future photonic technologies. However, previous studies are limited to reporting their steady-state performance, presenting a fundamental obstacle to the development of high-speed optical devices with polarization sensitivity. Here, a comprehensive analysis of ultrafast chiroptical response of chiral gold nano-oligomers using time-resolved polarimetric measurements is provided. Significant differences are observed in terms of the absorption intensity, thus hot electron generation, and hot carrier decay time upon polarized photopumping, which are explained by a phenomenological model of the helicity-resolved optical transitions. Moreover, the chiroptical signal is switchable by reversing the direction of the pump pulse, demonstrating the versatile modulation of polarization selection in a single device. The results offer fundamental insights into the helicity-resolved optical transitions in photoexcited chiral plasmonics and can facilitate the development of high-speed polarization-sensitive flat optics with potential applications in nanophotonics and quantum optics.

2.
Adv Mater ; 35(3): e2206141, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36284479

RESUMO

Artificial chiral nanostructures have been subjected to extensive research for their unique chiroptical activities. Planarized chiral films of ultrathin thicknesses are in particular demand for easy on-chip integration and improved energy efficiency as polarization-sensitive metadevices. Recently, controlled twisted stacking of two or more layers of nanomaterials, such as 2D van der Waals materials, ultrathin films, or traditional metasurfaces, at an angle has emerged as a general strategy to introduce optical chirality into achiral solid-state systems. This method endows new degrees of freedom, e.g., the interlayer twist angle, to flexibly engineer and tune the chiroptical responses without having to change the material or the design, thus greatly facilitating the development of multifunctional metamaterials. In this review, recent exciting progress in planar chiral metasurfaces are summarized and discussed from the viewpoints of building blocks, fabrication methods, as well as circular dichroism and modulation thereof in twisted stacked nanostructures. The review further highlights the ever-growing portfolio of applications of these chiral metasurfaces, including polarization conversion, information encryption, chiral sensing, and as an engineering platform for hybrid metadevices. Finally, forward-looking prospects are provided.

3.
Nanoscale Adv ; 5(18): 4670-4674, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37705783

RESUMO

This work exploits the magneto-optical activity of gold nanorods for the detection of sub-micromolar concentrations of glutathione using magnetic circular dichroism spectroscopy. Modulations of the magnetoplasmonic response of nanorods serve as the basis of the sensing methodology, whereby the presence of glutathione induces the end-to-end assembly of nanorods. In particular, the nanorod self-assembly enables a localized electric field in the nanocavities with adsorbed thiol molecules, whose field strength is amplified by the external magnetic field as confirmed by finite-element modeling, enabling their high-sensitivity detection. Our simple magnetoplasmonic sensor for glutathione requires no specific chemical tags and exhibits an impressive limit of detection of 97 nM.

4.
Glob Chall ; 6(3): 2100091, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35284090

RESUMO

The increasing commercial use of engineered zinc oxide nanomaterials necessitates a thorough understanding of their behavior following their release into wastewater. Herein, the fates of zinc oxide nanoparticles (ZnO NPs) and ionic Zn in a real primary sludge collected from a municipal wastewater system are studied via stable isotope tracing at an environmentally relevant spiking concentration of 15.2 µg g-1. Due to rapid dissolution, nanoparticulate ZnO does not impart particle-specific effects, and the Zn ions from NP dissolution and ionic Zn display indistinguishable behavior as they partition equally between the solid, liquid, and ultrafiltrate phases of the sludge over a 4-h incubation period. This work provides important constraints on the behavior of engineered ZnO nanomaterials in primary sludge-the first barrier in a wastewater treatment plant-at low, realistic concentrations. As the calculated solid-liquid partition coefficients are significantly lower than those reported in prior studies that employ unreasonably high spiking concentrations, this work highlights the importance of using low, environmentally relevant doses of engineered nanomaterials in experiments to obtain accurate risk assessments.

5.
J Food Sci ; 83(6): 1631-1638, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29786853

RESUMO

A simple, rapid, and specific colorimetric method for gentamicin detection using cysteamine-modified gold nanoparticles (cys-AuNPs) has been developed. The maximum residue limits of gentamicin allowed in foods are typically below 100 nM, so an effective detection method for low concentrations of the drug is required. The aggregation of gold nanoparticles (AuNPs) was used as the basis for this method, and adding cysteamine to the AuNPs helped to enhance their aggregative abilities. The cys-AuNPs are capable of detecting gentamicin concentrations as low as 12.45 nM in water, which could be quantified using UV-vis spectroscopy. Samples extracted from skim milk with a simple pretreatment showed that gentamicin concentrations down to at least 100 nM could be observed using the cys-AuNPs. This study demonstrates the ability of the cys-AuNPs to rapidly detect and quantify gentamicin in both simple and complex matrices. PRACTICAL APPLICATION: This study demonstrates that cysteamine-modified gold nanoparticles could be used as a rapid and efficient tool for gentamicin detection. This technique is cheaper, simpler, and more effective than many other methods that are currently used for detecting the antibiotic in industrial and commercial applications. It has a great potential to be practically applied as a rapid screening method for gentamicin and gentamicin-like compounds in food and environmental samples.


Assuntos
Colorimetria , Cisteamina/química , Gentamicinas/análise , Ouro/química , Nanopartículas Metálicas/química , Animais , Análise de Alimentos , Contaminação de Alimentos/análise , Leite/química , Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA