Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
2.
Plant Physiol ; 174(2): 1250-1259, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28404726

RESUMO

Strigolactones (SLs) are a class of plant hormones that regulate diverse physiological processes, including shoot branching and root development. They also act as rhizosphere signaling molecules to stimulate the germination of root parasitic weeds and the branching of arbuscular mycorrhizal fungi. Although various types of cross talk between SLs and other hormones have been reported in physiological analyses, the cross talk between gibberellin (GA) and SLs is poorly understood. We screened for chemicals that regulate the level of SLs in rice (Oryza sativa) and identified GA as, to our knowledge, a novel SL-regulating molecule. The regulation of SL biosynthesis by GA is dependent on the GA receptor GID1 and F-box protein GID2. GA treatment also reduced the infection of rice plants by the parasitic plant witchers weed (Striga hermonthica). These data not only demonstrate, to our knowledge, the novel plant hormone cross talk between SL and GA, but also suggest that GA can be used to control parasitic weed infections.


Assuntos
Giberelinas/metabolismo , Lactonas/metabolismo , Transdução de Sinais , Genes de Plantas , Germinação/efeitos dos fármacos , Mutação/genética , Oryza/genética , Oryza/metabolismo , Oryza/parasitologia , Doenças das Plantas/parasitologia , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/parasitologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Striga/fisiologia
3.
Proc Natl Acad Sci U S A ; 111(4): 1640-5, 2014 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-24434551

RESUMO

Strigolactones (SLs) are a class of terpenoid plant hormones that regulate shoot branching as well as being known as root-derived signals for symbiosis and parasitism. SL has tricyclic-lactone (ABC-ring) and methyl butenolide (D-ring), and they are connected through an enol ether bridge. Recently, a putative biosynthetic intermediate called carlactone (CL), of which carbon skeleton is in part similar to those of SLs, was identified by biochemical analysis of three biosynthetic enzymes, DWARF27, CAROTENOID CLEAVAGE DIOXYGENASE 7 (CCD7), and CCD8 in vitro. However, CL has never been identified from plant tissues, and the conversion of CL to SLs has not been proven in vivo. To address these questions, we chemically synthesized (13)C-labeled CL. We show that (13)C-labeled CL is converted to (-)-[(13)C]-2'-epi-5-deoxystrigol ((-)-2'-epi-5DS) and [(13)C]-orobanchol, endogenous SLs in rice, in the dwarf10 mutant, which is defective in CCD8. In addition, we successfully identified endogenous CL by using liquid chromatography-quadrupole/time-of-flight tandem mass spectrometry in rice and Arabidopsis. Furthermore, we determined the absolute stereochemistry of endogenous CL to be (11R)-configuration, which is the same as that of (-)-2'-epi-5DS at the corresponding position. Feeding experiments showed that only the (11R)-isomer of CL, but not the (11S)-isomer, was converted to (-)-2'-epi-5DS in vivo. Taken together, our data provide conclusive evidence that CL is an endogenous SL precursor that is stereospecifically recognized in the biosynthesis pathway.


Assuntos
Lactonas/metabolismo , Vias Biossintéticas , Cromatografia Líquida , Oryza/metabolismo , Espectrometria de Massas em Tandem
4.
Plant J ; 81(2): 347-56, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25429996

RESUMO

The development and elongation of active tillers in rice was severely reduced by a lack of cytosolic glutamine synthetase1;2 (GS1;2), and, to a lesser extent, lack of NADH-glutamate synthase1 in knockout mutants. In situ hybridization using the basal part of wild-type seedlings clearly showed that expression of OsGS1;2 was detected in the phloem companion cells of the nodal vascular anastomoses and large vascular bundles of axillary buds. Accumulation of lignin, visualized using phloroglucin HCl, was also observed in these tissues. The lack of GS1;2 resulted in reduced accumulation of lignin. Re-introduction into the mutants of OsGS1;2 cDNA under the control of its own promoter successfully restored the outgrowth of tillers and lignin deposition to wild-type levels. Transcriptomic analysis using a 5 mm basal region of rice shoots showed that the GS1;2 mutants accumulated reduced amounts of mRNAs for carbon and nitrogen metabolism, including C1 unit transfer in lignin synthesis. Although a high content of strigolactone in rice roots is known to reduce active tiller number, the reduction of outgrowth of axillary buds observed in the GS1;2 mutants was independent of the level of strigolactone. Thus metabolic disorder caused by the lack of GS1;2 resulted in a severe reduction in the outgrowth of axillary buds and lignin deposition.


Assuntos
Glutamato-Amônia Ligase/metabolismo , Oryza/enzimologia , Oryza/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Plântula/enzimologia , Plântula/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Glutamato-Amônia Ligase/genética , Dados de Sequência Molecular , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Plântula/genética , Plântula/metabolismo
5.
Proc Natl Acad Sci U S A ; 110(5): 1947-52, 2013 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-23319637

RESUMO

Bioactive gibberellins (GAs) control many aspects of growth and development in plants. GA(1) has been the most frequently found bioactive GA in various tissues of flowering plants, but the enzymes responsible for GA(1) biosynthesis have not been fully elucidated due to the enzymes catalyzing the 13-hydroxylation step not being identified. Because of the lack of mutants defective in this enzyme, biological significance of GA 13-hydroxylation has been unknown. Here, we report that two cytochrome P450 genes, CYP714B1 and CYP714B2, encode GA 13-oxidase in rice. Transgenic Arabidopsis plants that overexpress CYP714B1 or CYP714B2 show semidwarfism. There was a trend that the levels of 13-OH GAs including GA(1) were increased in these transgenic plants. Functional analysis using yeast or insect cells shows that recombinant CYP714B1 and CYP714B2 proteins can convert GA(12) into GA(53) (13-OH GA(12)) in vitro. Moreover, the levels of 13-OH GAs including GA(1) were decreased, whereas those of 13-H GAs including GA(4) (which is more active than GA(1)) were increased, in the rice cyp714b1 cyp714b2 double mutant. These results indicate that CYP714B1 and CYP714B2 play a predominant role in GA 13-hydroxylation in rice. The double mutant plants appear phenotypically normal until heading, but show elongated uppermost internode at the heading stage. Moreover, CYP714B1 and CYP714B2 expression was up-regulated by exogenous application of bioactive GAs. Our results suggest that GA 13-oxidases play a role in fine-tuning plant growth by decreasing GA bioactivity in rice and that they also participate in GA homeostasis.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Giberelinas/metabolismo , Oxigenases de Função Mista/metabolismo , Oryza/metabolismo , Animais , Arabidopsis/genética , Arabidopsis/metabolismo , Sistema Enzimático do Citocromo P-450/classificação , Sistema Enzimático do Citocromo P-450/genética , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Giberelinas/farmacologia , Hidroxilação , Immunoblotting , Oxigenases de Função Mista/genética , Mutação , Oryza/genética , Fenótipo , Filogenia , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Sf9
6.
Plant Cell Physiol ; 56(6): 1059-72, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25713176

RESUMO

The structural requirements of strigolactones (SLs) involved in germination induction of root parasitic plants and hyphal branching in arbuscular mycorrhizal (AM) fungi have been extensively studied. However, our knowledge of the requirements of SLs involved in shoot branching inhibition in plants is still limited. To address this question, we investigated the structure-activity relationships of SLs in shoot branching inhibition in rice and Arabidopsis. SLs possess a four-ring structure, with a tricyclic lactone (ABC-rings) connected to a methylbutenolide part (D-ring) via an enol ether bridge. Here, we show that the the (R) configuration at C-2', which determines the steric position of the D-ring relative to the enol ether olefin bond, is critical for the hormonal activity in rice. Replacement of the enol ether moiety by an alkoxy or imino ether resulted in a severe reduction in biological activity in rice. Moreover, yeast two-hybrid experiments using a possible SL receptor, DWARF14 (D14), and a repressor in the SL signaling pathway, DWARF53 (D53), showed that D14 can interact with D53 in the presence of (2'R) stereoisomers of SLs, but not (2'S) stereoisomers, suggesting that the stereostructure of SLs is crucial for the interaction of these proteins. When GR5, an AB-ring-truncated analog, was applied to the hydroponic culture medium, strong inhibition of shoot branching was observed both in rice and in Arabidopsis. However, GR5 was only weakly active when directly applied to the axillary buds of Arabidopsis. Our results indicate that the difference in plant species and application methods greatly influences the apparent SL biological activity.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Lactonas/farmacologia , Oryza/crescimento & desenvolvimento , Brotos de Planta/crescimento & desenvolvimento , Arabidopsis/efeitos dos fármacos , Meios de Cultura , Éter/química , Germinação/efeitos dos fármacos , Hidroponia , Hipocótilo/efeitos dos fármacos , Hipocótilo/crescimento & desenvolvimento , Lactonas/química , Oryza/efeitos dos fármacos , Brotos de Planta/efeitos dos fármacos , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Estereoisomerismo , Técnicas do Sistema de Duplo-Híbrido
7.
Plant Cell ; 24(9): 3795-804, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22960909

RESUMO

Plant activators are compounds, such as analogs of the defense hormone salicylic acid (SA), that protect plants from pathogens by activating the plant immune system. Although some plant activators have been widely used in agriculture, the molecular mechanisms of immune induction are largely unknown. Using a newly established high-throughput screening procedure that screens for compounds that specifically potentiate pathogen-activated cell death in Arabidopsis thaliana cultured suspension cells, we identified five compounds that prime the immune response. These compounds enhanced disease resistance against pathogenic Pseudomonas bacteria in Arabidopsis plants. Pretreatments increased the accumulation of endogenous SA, but reduced its metabolite, SA-O-ß-d-glucoside. Inducing compounds inhibited two SA glucosyltransferases (SAGTs) in vitro. Double knockout plants that lack both SAGTs consistently exhibited enhanced disease resistance. Our results demonstrate that manipulation of the active free SA pool via SA-inactivating enzymes can be a useful strategy for fortifying plant disease resistance and may identify useful crop protectants.


Assuntos
Arabidopsis/enzimologia , Glucosiltransferases/genética , Doenças das Plantas/imunologia , Pseudomonas/patogenicidade , Ácido Salicílico/metabolismo , Arabidopsis/genética , Arabidopsis/imunologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Morte Celular , Células Cultivadas , Resistência à Doença , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Glucosídeos/metabolismo , Glucosiltransferases/metabolismo , Ensaios de Triagem em Larga Escala , Mutagênese Insercional , Doenças das Plantas/microbiologia , Plantas Geneticamente Modificadas , Salicilatos/metabolismo , Bibliotecas de Moléculas Pequenas
8.
Proc Natl Acad Sci U S A ; 109(24): 9653-8, 2012 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-22645333

RESUMO

Movement of the plant hormone abscisic acid (ABA) within plants has been documented; however, the molecular mechanisms that regulate ABA transport are not fully understood. By using a modified yeast two-hybrid system, we screened Arabidopsis cDNAs capable of inducing interactions between the ABA receptor PYR/PYL/RCAR and PP2C protein phosphatase under low ABA concentrations. By using this approach, we identified four members of the NRT1/PTR family as candidates for ABA importers. Transport assays in yeast and insect cells demonstrated that at least one of the candidates ABA-IMPORTING TRANSPORTER (AIT) 1, which had been characterized as the low-affinity nitrate transporter NRT1.2, mediates cellular ABA uptake. Compared with WT, the ait1/nrt1.2 mutants were less sensitive to exogenously applied ABA during seed germination and/or postgermination growth, whereas overexpression of AIT1/NRT1.2 resulted in ABA hypersensitivity in the same conditions. Interestingly, the inflorescence stems of ait1/nrt1.2 had a lower surface temperature than those of the WT because of excess water loss from open stomata. We detected promoter activities of AIT1/NRT1.2 around vascular tissues in inflorescence stems, leaves, and roots. These data suggest that the function of AIT1/NRT1.2 as an ABA importer at the site of ABA biosynthesis is important for the regulation of stomatal aperture in inflorescence stems.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , Técnicas do Sistema de Duplo-Híbrido
9.
Plant Physiol ; 162(4): 2125-39, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23818171

RESUMO

DELLA repression of Arabidopsis (Arabidopsis thaliana) seed germination can be lifted either through DELLA proteolysis by the ubiquitin-proteasome pathway or through proteolysis-independent gibberellin (GA) hormone signaling. GA binding to the GIBBERELLIN-INSENSITIVE DWARF1 (GID1) GA receptors stimulates GID1-GA-DELLA complex formation, which in turn triggers DELLA protein ubiquitination and proteolysis via the SCF(SLY1) E3 ubiquitin ligase and 26S proteasome. Although DELLA cannot be destroyed in the sleepy1-2 (sly1-2) F-box mutant, long dry after-ripening and GID1 overexpression can relieve the strong sly1-2 seed dormancy phenotype. It appears that sly1-2 seed dormancy results from abscisic acid (ABA) signaling downstream of DELLA, since dormant sly1-2 seeds accumulate high levels of ABA hormone and loss of ABA sensitivity rescues sly1-2 seed germination. DELLA positively regulates the expression of XERICO, an inducer of ABA biosynthesis. GID1b overexpression rescues sly1-2 germination through proteolysis-independent DELLA down-regulation associated with increased expression of GA-inducible genes and decreased ABA accumulation, apparently as a result of decreased XERICO messenger RNA levels. Higher levels of GID1 overexpression are associated with more efficient sly1 germination and increased GID1-GA-DELLA complex formation, suggesting that GID1 down-regulates DELLA through protein binding. After-ripening results in increased GA accumulation and GID1a-dependent GA signaling, suggesting that after-ripening triggers GA-stimulated GID1-GA-DELLA protein complex formation, which in turn blocks DELLA transcriptional activation of the XERICO inhibitor of seed germination.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Germinação/fisiologia , Giberelinas/metabolismo , Sementes/fisiologia , Ácido Abscísico/genética , Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Mutação , Dormência de Plantas/genética , Brotos de Planta/genética , Brotos de Planta/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Sementes/metabolismo , Transdução de Sinais
10.
Nature ; 455(7210): 195-200, 2008 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-18690207

RESUMO

Shoot branching is a major determinant of plant architecture and is highly regulated by endogenous and environmental cues. Two classes of hormones, auxin and cytokinin, have long been known to have an important involvement in controlling shoot branching. Previous studies using a series of mutants with enhanced shoot branching suggested the existence of a third class of hormone(s) that is derived from carotenoids, but its chemical identity has been unknown. Here we show that levels of strigolactones, a group of terpenoid lactones, are significantly reduced in some of the branching mutants. Furthermore, application of strigolactones inhibits shoot branching in these mutants. Strigolactones were previously found in root exudates acting as communication chemicals with parasitic weeds and symbiotic arbuscular mycorrhizal fungi. Thus, we propose that strigolactones act as a new hormone class-or their biosynthetic precursors-in regulating above-ground plant architecture, and also have a function in underground communication with other neighbouring organisms.


Assuntos
Lactonas/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/crescimento & desenvolvimento , Terpenos/farmacologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Lactonas/análise , Lactonas/química , Lactonas/metabolismo , Mutação , Oryza/efeitos dos fármacos , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Oryza/parasitologia , Reguladores de Crescimento de Plantas/análise , Reguladores de Crescimento de Plantas/química , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/parasitologia , Plântula , Terpenos/análise , Terpenos/química , Terpenos/metabolismo
11.
Proc Natl Acad Sci U S A ; 108(45): 18512-7, 2011 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-22025724

RESUMO

The phytohormone auxin plays critical roles in the regulation of plant growth and development. Indole-3-acetic acid (IAA) has been recognized as the major auxin for more than 70 y. Although several pathways have been proposed, how auxin is synthesized in plants is still unclear. Previous genetic and enzymatic studies demonstrated that both TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS (TAA) and YUCCA (YUC) flavin monooxygenase-like proteins are required for biosynthesis of IAA during plant development, but these enzymes were placed in two independent pathways. In this article, we demonstrate that the TAA family produces indole-3-pyruvic acid (IPA) and the YUC family functions in the conversion of IPA to IAA in Arabidopsis (Arabidopsis thaliana) by a quantification method of IPA using liquid chromatography-electrospray ionization-tandem MS. We further show that YUC protein expressed in Escherichia coli directly converts IPA to IAA. Indole-3-acetaldehyde is probably not a precursor of IAA in the IPA pathway. Our results indicate that YUC proteins catalyze a rate-limiting step of the IPA pathway, which is the main IAA biosynthesis pathway in Arabidopsis.


Assuntos
Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Biocatálise , Espectrometria de Massas em Tandem
12.
Plant Cell Physiol ; 54(11): 1837-51, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24009336

RESUMO

Endogenous levels of bioactive gibberellins (GAs) are controlled by both biosynthetic and inactivation processes, and some cytochrome P450s are involved in this control mechanism. We have previously reported that CYP714B1 and CYP714B2 encode the enzyme GA 13-oxidase, which is required for GA1 biosynthesis, and that CYP714D1 encodes GA 16α,17-epoxidase, which inactivates the non-13-hydroxy GAs in rice. Arabidopsis has two CYP714 members, CYP714A1 and CYP714A2. To clarify the possible role of these genes in GA metabolism, enzymatic activities of their recombinant proteins were analyzed using a yeast expression system. We found that the recombinant CYP714A1 protein catalyzes the conversion of GA12 to 16-carboxylated GA12 (16-carboxy-16ß,17-dihydro GA12), a previously unidentified GA metabolite. Bioassays of this GA product showed that CYP714A1 is an inactivation enzyme in Arabidopsis. This was confirmed by the extreme GA-deficient dwarf phenotype shown by CYP714A1-overexpressing plants. Intriguingly, the recombinant CYP714A2 protein catalyzed the conversion of ent-kaurenoic acid into steviol (ent-13-hydroxy kaurenoic acid). When GA12 was used as a substrate for CYP714A2, 12α-hydroxy GA12 (GA111) was produced as a major product and 13-hydroxy GA12 (GA53) as a minor product. Transgenic Arabidopsis plants overexpressing the CYP714A2 gene showed semi-dwarfism. GA analysis showed that the levels of non-13-hydroxy GAs, including GA4, were decreased, whereas those of 13-hydroxy GAs, including GA1 (which is less active than GA4), were increased in the transgenic plants. Our results suggest that the CYP714 family proteins contribute to the production of diverse GA compounds through various oxidations of C and D rings in both monocots and eudicots.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Regulação da Expressão Gênica de Plantas , Giberelinas/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Vias Biossintéticas , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Germinação , Giberelinas/análise , Giberelinas/química , Modelos Biológicos , Mutação , Oxirredução , Fenótipo , Plantas Geneticamente Modificadas , Proteínas Recombinantes
13.
Plant J ; 66(3): 502-15, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21255164

RESUMO

Changes in the duration, quality and intensity of light affect flowering time. Compared with the effects of light duration and quality, less is known about the effects of light intensity on flowering. Here we describe two paralogous single Myb domain genes, MYB-RELATED PROTEIN 1 (MYR1) and MYB-RELATED PROTEIN 2 (MYR2), and their roles as repressors of responses to decreased light intensity in Arabidopsis. Homozygous myr1 myr2 double mutants flowered early under low light intensities. Additionally, myr1 myr2 mutants exhibited increases in petiole length, leaf angle and apical dominance. Genetic analyses involving mutants in the long-day, gibberellin (GA) and phyB flowering pathways indicated that all aspects of the myr1 myr2 phenotype required GA biosynthesis. The early-flowering phenotype of myr1 myr2 also required FLOWERING LOCUS T, and myr1 myr2 mutants showed an epistatic interaction with the phyB-9 mutant. Over-expression of MYR1 or MYR2 produced GA-deficiency symptoms that were rescued by application of gibberellic acid (GA3). Loss of MYR1 and MYR2 function was associated with a twofold increase in GA20ox2 expression and a 30% increase in GA4 levels, while over-expression of MYR2 led to a threefold decrease in GA20ox2 expression and a 50% decrease in GA4 levels. Considered together, these results suggest that the ability of MYR1 and MYR2 to repress flowering and organ elongation is at least partly due to their negative effect on levels of bioactive GA.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Flores/crescimento & desenvolvimento , Giberelinas/metabolismo , Fatores de Transcrição/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/efeitos da radiação , Flores/genética , Flores/efeitos da radiação , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Mutação , Fenótipo , Floema/genética , Fotoperíodo , Reguladores de Crescimento de Plantas , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/efeitos da radiação
14.
Plant Cell Physiol ; 53(9): 1570-82, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22764280

RESUMO

In contrast to a wealth of knowledge about the photoregulation of gibberellin metabolism in dicots, that in monocots remains largely unclear. In this study, we found that a blue light signal triggers reduction of active gibberellin content in rice seedlings with simultaneous repression of two gibberellin 20-oxidase genes (OsGA20ox2 and OsGA20ox4) and acute induction of four gibberellin 2-oxidase genes (OsGA2ox4-OsGA2ox7). For further examination of the regulation of these genes, we established a series of cryptochrome-deficient lines through reverse genetic screening from a Tos17 mutant population and construction of knockdown lines based on an RNA interference technique. By using these lines and phytochrome mutants, we elucidated that cryptochrome 1 (cry1), consisting of two species in rice plants (cry1a and cry1b), is indispensable for robust induction of the GA2ox genes. On the other hand, repression of the GA20ox genes is mediated by phytochromes. In addition, we found that the phytochromes also mediate the repression of a gibberellin 3-oxidase gene (OsGA3ox2) in the light. These results imply that, in rice seedlings, phytochromes mediate the repression of gibberellin biosynthesis capacity, while cry1 mediates the induction of gibberellin inactivation capacity. The cry1 action was demonstrated to be dominant in the reduction of active gibberellin content, but, in rice seedlings, the cumulative effects of these independent actions reduced active gibberellin content in the light. This pathway design in which different types of photoreceptors independently but cooperatively regulate active gibberellin content is unique from the viewpoint of dicot research. This redundancy should provide robustness to the response in rice plants.


Assuntos
Criptocromos/metabolismo , Giberelinas/metabolismo , Luz , Oryza/metabolismo , Oryza/efeitos da radiação , Fitocromo/metabolismo , Plântula/metabolismo , Escuridão , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Técnicas de Silenciamento de Genes , Genes de Plantas/genética , Giberelinas/biossíntese , Giberelinas/farmacologia , Modelos Biológicos , Mutação/genética , Oryza/genética , Folhas de Planta/anatomia & histologia , Folhas de Planta/efeitos da radiação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plântula/efeitos da radiação , Transdução de Sinais/genética , Transdução de Sinais/efeitos da radiação , Transcrição Gênica/efeitos da radiação
15.
Plant Physiol ; 157(3): 1187-95, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21911595

RESUMO

Although phyAphyBphyC phytochrome-null mutants in rice (Oryza sativa) have morphological changes and exhibit internode elongation, even as seedlings, it is unknown how phytochromes contribute to the control of internode elongation. A gene for 1-aminocyclopropane-1-carboxylate oxidase (ACO1), which is an ethylene biosynthesis gene contributing to internode elongation, was up-regulated in phyAphyBphyC seedlings. ACO1 expression was controlled mainly by phyA and phyB, and a histochemical analysis showed that ACO1 expression was localized to the basal parts of leaf sheaths of phyAphyBphyC seedlings, similar to mature wild-type plants at the heading stage, when internode elongation was greatly promoted. In addition, the transcription levels of several ethylene- or gibberellin (GA)-related genes were changed in phyAphyBphyC mutants, and measurement of the plant hormone levels indicated low ethylene production and bioactive GA levels in the phyAphyBphyC mutants. We demonstrate that ethylene induced internode elongation and ACO1 expression in phyAphyBphyC seedlings but not in the wild type and that the presence of bioactive GAs was necessary for these effects. These findings indicate that phytochromes contribute to multiple steps in the control of internode elongation, such as the expression of the GA biosynthesis gene OsGA3ox2, ACO1 expression, and the onset of internode elongation.


Assuntos
Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Fitocromo/metabolismo , Proteínas de Plantas/metabolismo , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/metabolismo , Etilenos/metabolismo , Etilenos/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Giberelinas/metabolismo , Giberelinas/farmacologia , Modelos Biológicos , Mutação/genética , Oryza/efeitos dos fármacos , Oryza/genética , Proteínas de Plantas/genética , Caules de Planta/efeitos dos fármacos , Caules de Planta/genética
16.
Plant Cell ; 21(12): 4002-17, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20028839

RESUMO

Geranyl diphosphate (GPP), the precursor of many monoterpene end products, is synthesized in plastids by a condensation of dimethylallyl diphosphate and isopentenyl diphosphate (IPP) in a reaction catalyzed by homodimeric or heterodimeric GPP synthase (GPPS). In the heterodimeric enzymes, a noncatalytic small subunit (GPPS.SSU) determines the product specificity of the catalytic large subunit, which may be either an active geranylgeranyl diphosphate synthase (GGPPS) or an inactive GGPPS-like protein. Here, we show that expression of snapdragon (Antirrhinum majus) GPPS.SSU in tobacco (Nicotiana tabacum) plants increased the total GPPS activity and monoterpene emission from leaves and flowers, indicating that the introduced catalytically inactive GPPS.SSU found endogenous large subunit partner(s) and formed an active snapdragon/tobacco GPPS in planta. Bimolecular fluorescence complementation and in vitro enzyme analysis of individual and hybrid proteins revealed that two of four GGPPS-like candidates from tobacco EST databases encode bona fide GGPPS that can interact with snapdragon GPPS.SSU and form a functional GPPS enzyme in plastids. The formation of chimeric GPPS in transgenic plants also resulted in leaf chlorosis, increased light sensitivity, and dwarfism due to decreased levels of chlorophylls, carotenoids, and gibberellins. In addition, these transgenic plants had reduced levels of sesquiterpene emission, suggesting that the export of isoprenoid intermediates from the plastids into the cytosol was decreased. These results provide genetic evidence that GPPS.SSU modifies the chain length specificity of phylogenetically distant GGPPS and can modulate IPP flux distribution between GPP and GGPP synthesis in planta.


Assuntos
Antirrhinum/enzimologia , Farnesiltranstransferase/metabolismo , Nicotiana/enzimologia , Sesquiterpenos/metabolismo , Antirrhinum/genética , Clonagem Molecular , Difosfatos/metabolismo , Diterpenos/metabolismo , Farnesiltranstransferase/genética , Flores/metabolismo , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Monoterpenos/metabolismo , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , RNA de Plantas/genética , Nicotiana/genética
17.
Nat Chem Biol ; 6(10): 741-9, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20818397

RESUMO

Parasitic weeds of the genera Striga and Orobanche are considered the most damaging agricultural agents in the developing world. An essential step in parasitic seed germination is sensing a group of structurally related compounds called strigolactones that are released by host plants. Although this makes strigolactone synthesis and action a major target of biotechnology, little fundamental information is known about this hormone. Chemical genetic screening using Arabidopsis thaliana as a platform identified a collection of related small molecules, cotylimides, which perturb strigolactone accumulation. Suppressor screens against select cotylimides identified light-signaling genes as positive regulators of strigolactone levels. Molecular analysis showed strigolactones regulate the nuclear localization of the COP1 ubiquitin ligase, which in part determines the levels of light regulators such as HY5. This information not only uncovers new functions for strigolactones but was also used to identify rice cultivars with reduced capacity to germinate parasitic seed.


Assuntos
Arabidopsis/efeitos dos fármacos , Lactonas/análise , Lactonas/farmacologia , Reguladores de Crescimento de Plantas/análise , Reguladores de Crescimento de Plantas/farmacologia , Bibliotecas de Moléculas Pequenas , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Genótipo , Germinação/efeitos dos fármacos , Hipocótilo/efeitos dos fármacos , Hipocótilo/genética , Hipocótilo/crescimento & desenvolvimento , Lactonas/química , Lactonas/metabolismo , Luz , Proteínas Nucleares/metabolismo , Reguladores de Crescimento de Plantas/química , Reguladores de Crescimento de Plantas/metabolismo , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Plântula/efeitos da radiação , Bibliotecas de Moléculas Pequenas/química , Enzimas de Conjugação de Ubiquitina/metabolismo
18.
Proc Natl Acad Sci U S A ; 106(13): 5430-5, 2009 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-19279202

RESUMO

Auxins are hormones that regulate many aspects of plant growth and development. The main plant auxin is indole-3-acetic acid (IAA), whose biosynthetic pathway is not fully understood. Indole-3-acetaldoxime (IAOx) has been proposed to be a key intermediate in the synthesis of IAA and several other indolic compounds. Genetic studies of IAA biosynthesis in Arabidopsis have suggested that 2 distinct pathways involving the CYP79B or YUCCA (YUC) genes may contribute to IAOx synthesis and that several pathways are also involved in the conversion of IAOx to IAA. Here we report the biochemical dissection of IAOx biosynthesis and metabolism in plants by analyzing IAA biosynthesis intermediates. We demonstrated that the majority of IAOx is produced by CYP79B genes in Arabidopsis because IAOx production was abolished in CYP79B-deficient mutants. IAOx was not detected from rice, maize, and tobacco, which do not have apparent CYP79B orthologues. IAOx levels were not significantly altered in the yuc1 yuc2 yuc4 yuc6 quadruple mutants, suggesting that the YUC gene family probably does not contribute to IAOx synthesis. We determined the pathway for conversion of IAOx to IAA by identifying 2 likely intermediates, indole-3-acetamide (IAM) and indole-3-acetonitrile (IAN), in Arabidopsis. When (13)C(6)-labeled IAOx was fed to CYP79B-deficient mutants, (13)C(6) atoms were efficiently incorporated to IAM, IAN, and IAA. This biochemical evidence indicates that IAOx-dependent IAA biosynthesis, which involves IAM and IAN as intermediates, is not a common but a species-specific pathway in plants; thus IAA biosynthesis may differ among plant species.


Assuntos
Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Indóis/metabolismo , Oximas/metabolismo , Redes e Vias Metabólicas
19.
Plant J ; 62(4): 653-62, 2010 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-20202166

RESUMO

Unilateral blue-light irradiation activates phototropin (phot) photoreceptors, resulting in asymmetric distribution of the phytohormone auxin and induction of a phototropic response in higher plants. Other photoreceptors, including phytochrome (phy) and cryptochrome (cry), have been proposed as modulators of phototropic responses. We show here that either phy or cry is required for hypocotyl phototropism in Arabidopsis thaliana under high fluence rates of blue light, and that constitutive expression of ROOT PHOTOTROPISM 2 (RPT2) and treatment with the phytohormone gibberellin (GA) biosynthesis inhibitor paclobutrazol partially and independently complement the non-phototropic hypocotyl phenotype of the phyA cry1 cry2 mutant under high fluence rates of blue light. Our results indicate that induction of RPT2 and reduction in the GA are crucial for hypocotyl phototropic regulation by phy and cry. We also show that GA suppresses hypocotyl bending via destabilization of DELLA transcriptional regulators under darkness, but does not suppress the phototropic response in the presence of either phyA or cryptochromes, suggesting that these photoreceptors control not only the GA content but also the GA sensing and/or signaling that affects hypocotyl phototropism. The metabolic and signaling regulation of not only auxin but also GA by photoreceptors therefore appears to determine the hypocotyl growth pattern, including phototropic and gravitropic responses and inhibition of hypocotyl elongation, for adaptation to various light environments.


Assuntos
Proteínas de Arabidopsis/metabolismo , Criptocromos/fisiologia , Hipocótilo/crescimento & desenvolvimento , Fototropismo , Fitocromo/fisiologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Giberelinas/biossíntese , Hipocótilo/efeitos da radiação , Transdução de Sinais
20.
Plant Physiol ; 153(3): 1085-97, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20488896

RESUMO

Gibberellins (GAs) are a group of diterpene-type plant hormones biosynthesized from ent-kaurene via ent-kaurenoic acid. GAs are ubiquitously present in seed plants. The GA signal is perceived and transduced by the GID1 GA receptor/DELLA repressor pathway. The lycopod Selaginella moellendorffii biosynthesizes GA and has functional GID1-DELLA signaling components. In contrast, no GAs or functionally orthologous GID1-DELLA components have been found in the moss Physcomitrella patens. However, P. patens produces ent-kaurene, a common precursor for GAs, and possesses a functional ent-kaurene synthase, PpCPS/KS. To assess the biological role of ent-kaurene in P. patens, we generated a PpCPS/KS disruption mutant that does not accumulate ent-kaurene. Phenotypic analysis demonstrates that the mutant has a defect in the protonemal differentiation of the chloronemata to caulonemata. Gas chromatography-mass spectrometry analysis shows that P. patens produces ent-kaurenoic acid, an ent-kaurene metabolite in the GA biosynthesis pathway. The phenotypic defect of the disruptant was recovered by the application of ent-kaurene or ent-kaurenoic acid, suggesting that ent-kaurenoic acid, or a downstream metabolite, is involved in protonemal differentiation. Treatment with uniconazole, an inhibitor of ent-kaurene oxidase in GA biosynthesis, mimics the protonemal phenotypes of the PpCPS/KS mutant, which were also restored by ent-kaurenoic acid treatment. Interestingly, the GA(9) methyl ester, a fern antheridiogen, rescued the protonemal defect of the disruption mutant, while GA(3) and GA(4), both of which are active GAs in angiosperms, did not. Our results suggest that the moss P. patens utilizes a diterpene metabolite from ent-kaurene as an endogenous developmental regulator and provide insights into the evolution of GA functions in land plants.


Assuntos
Bryopsida/citologia , Bryopsida/metabolismo , Diferenciação Celular , Giberelinas/metabolismo , Alquil e Aril Transferases/metabolismo , Vias Biossintéticas/efeitos dos fármacos , Bryopsida/enzimologia , Bryopsida/genética , Diferenciação Celular/efeitos dos fármacos , Ésteres/farmacologia , Técnicas de Inativação de Genes , Genes de Plantas/genética , Germinação/efeitos dos fármacos , Giberelinas/química , Giberelinas/farmacologia , Ácidos Indolacéticos/farmacologia , Modelos Biológicos , Mutação/genética , Fenótipo , Esporos/efeitos dos fármacos , Esporos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA