Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
PLoS Genet ; 18(9): e1010405, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36121853

RESUMO

In order to successfully induce disease, the fungal pathogen Candida albicans regulates exposure of antigens like the cell wall polysaccharide ß(1,3)-glucan to the host immune system. C. albicans covers (masks) ß(1,3)-glucan with a layer of mannosylated glycoproteins, which aids in immune system evasion by acting as a barrier to recognition by host pattern recognition receptors. Consequently, enhanced ß(1,3)-glucan exposure (unmasking) makes fungal cells more visible to host immune cells and facilitates more robust fungal clearance. However, an understanding of how C. albicans regulates its exposure levels of ß(1,3)-glucan is needed to leverage this phenotype. Signal transduction pathways and their corresponding effector genes mediating these changes are only beginning to be defined. Here, we report that the phosphatase calcineurin mediates unmasking of ß(1,3)-glucan in response to inputs from the Cek1 MAPK pathway and in response to caspofungin exposure. In contrast, calcineurin reduces ß-glucan exposure in response to high levels of extracellular calcium. Thus, depending on the input, calcineurin acts as a switchboard to regulate ß(1,3)-glucan exposure levels. By leveraging these differential ß(1,3)-glucan exposure phenotypes, we identified two novel effector genes in the calcineurin regulon, FGR41 and C1_11990W_A, that encode putative cell wall proteins and mediate masking/unmasking. Loss of either effector caused unmasking and attenuated virulence during systemic infection in mice. Furthermore, immunosuppression restored the colonization decrease seen in mice infected with the fgr41Δ/Δ mutant to wild-type levels, demonstrating a reliance on the host immune system for virulence attenuation. Thus, calcineurin and its downstream regulon are general regulators of unmasking.


Assuntos
Candida albicans , Proteínas Fúngicas/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , beta-Glucanas , Animais , Calcineurina/genética , Calcineurina/metabolismo , Cálcio/metabolismo , Candida albicans/genética , Candida albicans/metabolismo , Caspofungina/farmacologia , Parede Celular/metabolismo , Proteínas Fúngicas/genética , Glucanos/metabolismo , Camundongos , beta-Glucanas/metabolismo
2.
J Virol ; 96(8): e0025022, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35352999

RESUMO

In late 2019, a novel coronavirus began circulating within humans in central China. It was designated SARS-CoV-2 because of its genetic similarities to the 2003 SARS coronavirus (SARS-CoV). Now that SARS-CoV-2 has spread worldwide, there is a risk of it establishing new animal reservoirs and recombination with native circulating coronaviruses. To screen local animal populations in the United States for exposure to SARS-like coronaviruses, we developed a serological assay using the receptor binding domain (RBD) from SARS-CoV-2. SARS-CoV-2's RBD is antigenically distinct from common human and animal coronaviruses, allowing us to identify animals previously infected with SARS-CoV or SARS-CoV-2. Using an indirect enzyme-linked immunosorbent assay (ELISA) for SARS-CoV-2's RBD, we screened serum from wild and domestic animals for the presence of antibodies against SARS-CoV-2's RBD. Surprisingly prepandemic feline serum samples submitted to the University of Tennessee Veterinary Hospital were ∼50% positive for anti-SARS RBD antibodies. Some of these samples were serologically negative for feline coronavirus (FCoV), raising the question of the etiological agent generating anti-SARS-CoV-2 RBD cross-reactivity. We also identified several white-tailed deer from South Carolina with anti-SARS-CoV-2 antibodies. These results are intriguing, as cross-reactive antibodies toward SARS-CoV-2 RBD have not been reported to date. The etiological agent responsible for seropositivity was not readily apparent, but finding seropositive cats prior to the current SARS-CoV-2 pandemic highlights our lack of information about circulating coronaviruses in other species. IMPORTANCE We report cross-reactive antibodies from prepandemic cats and postpandemic South Carolina white-tailed deer that are specific for that SARS-CoV RBD. There are several potential explanations for this cross-reactivity, each with important implications to coronavirus disease surveillance. Perhaps the most intriguing possibility is the existence and transmission of an etiological agent (such as another coronavirus) with similarity to SARS-CoV-2's RBD region. However, we lack conclusive evidence of prepandemic transmission of a SARS-like virus. Our findings provide impetus for the adoption of a One Health Initiative focusing on infectious disease surveillance of multiple animal species to predict the next zoonotic transmission to humans and future pandemics.


Assuntos
Anticorpos Antivirais , Gatos , Cervos , Glicoproteína da Espícula de Coronavírus , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/diagnóstico , COVID-19/veterinária , Gatos/virologia , Reações Cruzadas/imunologia , Cervos/virologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/imunologia , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/metabolismo , Zoonoses Virais/diagnóstico , Zoonoses Virais/virologia
3.
PLoS Pathog ; 17(8): e1009839, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34432857

RESUMO

Masking the immunogenic cell wall epitope ß(1,3)-glucan under an outer layer of mannosylated glycoproteins is an important virulence factor deployed by Candida albicans during infection. Consequently, increased ß(1,3)-glucan exposure (unmasking) reveals C. albicans to the host's immune system and attenuates its virulence. We have previously shown that activation of the Cek1 MAPK pathway via expression of a hyperactive allele of an upstream kinase (STE11ΔN467) induced unmasking. It also increased survival of mice in a murine disseminated candidiasis model and attenuated kidney fungal burden by ≥33 fold. In this communication, we utilized cyclophosphamide-induced immunosuppression to test if the clearance of the unmasked STE11ΔN467 mutant was dependent on the host immune system. Suppression of the immune response by cyclophosphamide reduced the attenuation in fungal burden caused by the STE11ΔN467 allele. Moreover, specific depletion of neutrophils via 1A8 antibody treatment also reduced STE11ΔN467-dependent fungal burden attenuation, but to a lesser extent than cyclophosphamide, demonstrating an important role for neutrophils in mediating fungal clearance of unmasked STE11ΔN467 cells. In an effort to understand the mechanism by which Ste11ΔN467 causes unmasking, transcriptomics were used to reveal that several components in the Cek1 MAPK pathway were upregulated, including the transcription factor CPH1 and the cell wall sensor DFI1. In this report we show that a cph1ΔΔ mutation restored ß(1,3)-glucan exposure to wild-type levels in the STE11ΔN467 strain, confirming that Cph1 is the transcription factor mediating Ste11ΔN467-induced unmasking. Furthermore, Cph1 is shown to induce a positive feedback loop that increases Cek1 activation. In addition, full unmasking by STE11ΔN467 is dependent on the upstream cell wall sensor DFI1. However, while deletion of DFI1 significantly reduced Ste11ΔN467-induced unmasking, it did not impact activation of the downstream kinase Cek1. Thus, it appears that once stimulated by Ste11ΔN467, Dfi1 activates a parallel signaling pathway that is involved in Ste11ΔN467-induced unmasking.


Assuntos
Candida albicans/imunologia , Candidíase/prevenção & controle , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Neutrófilos/imunologia , Fatores de Transcrição/metabolismo , Virulência , beta-Glucanas/imunologia , Animais , Candidíase/imunologia , Candidíase/microbiologia , Parede Celular , Proteínas Fúngicas/genética , Camundongos , Camundongos Endogâmicos ICR , Neutrófilos/microbiologia , Fatores de Transcrição/genética
4.
Sci Adv ; 9(32): eade2693, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37566649

RESUMO

Histone modifications control numerous processes in eukaryotes, including inflammation. Some bacterial pathogens alter the activity or expression of host-derived factors, including sirtuins, to modify histones and induce responses that promote infection. In this study, we identified a deacetylase encoded by Campylobacter jejuni which has sirtuin activities and contributes to activation of human neutrophils by the pathogen. This sirtuin is secreted from the bacterium into neutrophils, where it associates with and deacetylates host histones to promote neutrophil activation and extracellular trap production. Using the murine model of campylobacteriosis, we found that a mutant of this bacterial sirtuin efficiently colonized the gastrointestinal tract but was unable to induce cytokine production, gastrointestinal inflammation, and tissue pathology. In conclusion, these results suggest that secreted bacterial sirtuins represent a previously unreported class of bacterial effector and that bacterial-mediated modification of host histones is responsible for the inflammation and pathology that occurs during campylobacteriosis.


Assuntos
Infecções por Campylobacter , Campylobacter jejuni , Camundongos , Humanos , Animais , Campylobacter jejuni/fisiologia , Histonas , Infecções por Campylobacter/microbiologia , Infecções por Campylobacter/patologia , Ativação de Neutrófilo , Inflamação
5.
Front Immunol ; 14: 1275372, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37854603

RESUMO

Introduction: Systemic amyloidosis is a progressive disorder characterized by the extracellular deposition of amyloid fibrils and accessory proteins in visceral organs and tissues. Amyloid accumulation causes organ dysfunction and is not generally cleared by the immune system. Current treatment focuses on reducing amyloid precursor protein synthesis and slowing amyloid deposition. However, curative interventions will likely also require removal of preexisting amyloid deposits to restore organ function. Here we describe a prototypic pan-amyloid binding peptide-antibody fusion molecule (mIgp5) that enhances macrophage uptake of amyloid. Methods: The murine IgG1-IgG2a hybrid immunoglobulin with a pan amyloid-reactive peptide, p5, fused genetically to the N-terminal of the immunoglobulin light chain was synthesized in HEK293T/17 cells. The binding of the p5 peptide moiety was assayed using synthetic amyloid-like fibrils, human amyloid extracts and amyloid-laden tissues as substrates. Binding of radioiodinated mIgp5 with amyloid deposits in vivo was evaluated in a murine model of AA amyloidosis using small animal imaging and microautoradiography. The bioactivity of mIgp5 was assessed in complement fixation and in vitro phagocytosis assays in the presence of patient-derived amyloid extracts and synthetic amyloid fibrils as substrates and in the presence or absence of human serum. Results: Murine Igp5 exhibited highly potent binding to AL and ATTR amyloid extracts and diverse types of amyloid in formalin-fixed tissue sections. In the murine model of systemic AA amyloidosis, 125I-mIgp5 bound rapidly and specifically to amyloid deposits in all organs, including the heart, with no evidence of non-specific uptake in healthy tissues. The bioactivity of the immunoglobulin Fc domain was uncompromised in the context of mIgp5 and served as an effective opsonin. Macrophage-mediated uptake of amyloid extract and purified amyloid fibrils was enhanced by the addition of mIgp5. This effect was exaggerated in the presence of human serum coincident with deposition of complement C5b9. Conclusion: Immunostimulatory, amyloid-clearing therapeutics can be developed by incorporating pan-amyloid-reactive peptides, such as p5, as a targeting moiety. The immunologic functionality of the IgG remains intact in the context of the fusion protein. These data highlight the potential use of peptide-antibody fusions as therapeutics for all types of systemic amyloidosis.


Assuntos
Amiloidose , Placa Amiloide , Camundongos , Animais , Humanos , Modelos Animais de Doenças , Células HEK293 , Amiloidose/metabolismo , Amiloide/metabolismo , Proteínas Amiloidogênicas/metabolismo , Peptídeos/metabolismo , Cadeias Leves de Imunoglobulina
6.
Pathogens ; 10(12)2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34959531

RESUMO

Human cytomegalovirus (HCMV) is a ubiquitous pathogen infecting a majority of people worldwide, with diseases ranging from mild to life-threatening. Its clinical relevance in immunocompromised people and congenital infections have made treatment and vaccine development a top priority. Because of cytomegaloviruses' species specificity, murine cytomegalovirus (MCMV) models have historically informed and advanced translational CMV therapies. Using the phenomenon of centrifugal enhancement, we explored differences between MCMVs derived in vitro and in vivo. We found centrifugal enhancement on tissue culture-derived virus (TCV) was ~3× greater compared with salivary gland derived virus (SGV). Using novel "flow virometry", we found that TCV contained a distinct submicron particle composition compared to SGV. Using an inhibitor of exosome production, we show these submicron particles are not extracellular vesicles that contribute to centrifugal enhancement. We examined how these differences in submicron particles potentially contribute to differing centrifugal enhancement phenotypes, as well as broader in vivo vs. in vitro MCMV differences.

7.
Curr Protoc ; 1(11): e294, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34807525

RESUMO

Campylobacter jejuni is the leading cause of bacterial-derived gastroenteritis worldwide, infecting 96 million individuals annually. During infection, inflammation and tissue pathology occur in the lower gastrointestinal tract, including the recruitment of leukocytes. Neutrophils are the most abundant leukocyte in humans, and recruitment is associated with bacterial infections and the development of various inflammatory disorders, including inflammatory bowel disease. Neutrophils possess three main antibacterial functions: phagocytosis and degradation of microbes, degranulation to release antimicrobial proteins, and extrusion of neutrophil extracellular traps (NETs). Because neutrophils are recruited to the site of C. jejuni infection and they are associated with damaging inflammation in other diseases, it is imperative to understand the immunopathology that occurs during C. jejuni infection and thoroughly study the neutrophil response to the pathogen. Detailed protocols for human and ferret neutrophil isolations, neutrophil gentamicin protection assay, neutrophil activation flow cytometry assay, NET induction and quantification, and neutrophil western blot analysis are included in this article. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Isolation of human and ferret neutrophils Basic Protocol 2: Neutrophil gentamicin protection assay Basic Protocol 3: Neutrophil activation flow cytometry analyses Basic Protocol 4: Neutrophil extracellular trap induction and quantification Basic Protocol 5: Western blot detection of neutrophil-derived antimicrobial proteins.


Assuntos
Campylobacter jejuni , Armadilhas Extracelulares , Animais , Furões , Humanos , Ativação de Neutrófilo , Neutrófilos
8.
mSphere ; 4(1)2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30760613

RESUMO

Human cytomegalovirus (HCMV) is a ubiquitous betaherpesvirus that can cause severe disease following in utero exposure, during primary infection, or latent virus reactivation in immunocompromised populations. These complications lead to a 1- to 2-billion-dollar economic burden, making vaccine development and/or alternative treatments a high priority. Current treatments for HCMV include nucleoside analogues such as ganciclovir (GCV), foscarnet, and cidofovir. Recently, letermovir, a terminase complex inhibitor, was approved for prophylaxis after stem cell transplantation. These treatments have unwanted side effects, and HCMV is becoming resistant to them. Therefore, we sought to develop an alternative treatment that targets a different stage in viral infection. Currently, small antiviral peptides are being investigated as anti-influenza and anti-HIV treatments. We have developed heparan sulfate-binding peptides as tools for preventing CMV infections. These peptides are highly effective at stopping infection of fibroblasts with in vitro-derived HCMV and murine cytomegalovirus (MCMV). However, they do not prevent MCMV infection in vivo Interestingly, these peptides inhibit infectivity of in vivo-derived CMVs, albeit not as well as tissue culture-grown CMVs. We further demonstrate that this class of heparan sulfate-binding peptides is incapable of inhibiting MCMV cell-to-cell spread, which is independent of heparan sulfate usage. These data indicate that inhibition of CMV infection can be achieved using synthetic polybasic peptides, but cell-to-cell spread and in vivo-grown CMVs require further investigation to design appropriate anti-CMV peptides.IMPORTANCE In the absence of an effective vaccine to prevent HCMV infections, alternative interventions must be developed. Prevention of viral entry into susceptible cells is an attractive alternative strategy. Here we report that heparan sulfate-binding peptides effectively inhibit entry into fibroblasts of in vitro-derived CMVs and partially inhibit in vivo-derived CMVs. This includes the inhibition of urine-derived HCMV (uCMV), which is highly resistant to antibody neutralization. While these antiviral peptides are highly effective at inhibiting cell-free virus, they do not inhibit MCMV cell-to-cell spread. This underscores the need to understand the mechanism of cell-to-cell spread and differences between in vivo-derived versus in vitro-derived CMV entry to effectively prevent CMV's spread.


Assuntos
Antivirais/farmacologia , Infecções por Citomegalovirus/prevenção & controle , Citomegalovirus/efeitos dos fármacos , Citomegalovirus/fisiologia , Peptídeos/farmacologia , Animais , Células Cultivadas , Infecções por Citomegalovirus/tratamento farmacológico , Modelos Animais de Doenças , Fibroblastos/virologia , Heparitina Sulfato/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Muromegalovirus/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
9.
mBio ; 10(3)2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31239384

RESUMO

Human cytomegalovirus (HCMV) is a betaherpesvirus that is a significant pathogen within newborn and immunocompromised populations. Morbidity associated with HCMV infection is the consequence of viral dissemination. HCMV has evolved to manipulate the host immune system to enhance viral dissemination and ensure long-term survival within the host. The immunomodulatory protein vCXCL-1, a viral chemokine functioning primarily through the CXCR2 chemokine receptor, is hypothesized to attract CXCR2+ neutrophils to infection sites, aiding viral dissemination. Neutrophils harbor HCMV in vivo; however, the interaction between vCXCL-1 and the neutrophil has not been evaluated in vivo Using the mouse model and mouse cytomegalovirus (MCMV) infection, we show that murine neutrophils harbor and transfer infectious MCMV and that virus replication initiates within this cell type. Utilizing recombinant MCMVs expressing vCXCL-1 from the HCMV strain (Toledo), we demonstrated that vCXCL-1 significantly enhances MCMV dissemination kinetics. Through cellular depletion experiments, we observe that neutrophils impact dissemination but that overall dissemination is largely neutrophil independent. This work adds neutrophils to the list of innate cells (i.e., dendritic and macrophages/monocytes) that contribute to MCMV dissemination but refutes the hypothesis that neutrophils are the primary cell responding to vCXCL-1.IMPORTANCE An adequate in vivo analysis of HCMV's viral chemokine vCXCL-1 has been lacking. Here we generate recombinant MCMVs expressing vCXCL-1 to study vCXCL-1 function in vivo using MCMV as a surrogate. We demonstrate that vCXCL-1 increases MCMV dissemination kinetics for both primary and secondary dissemination. Additionally, we provide evidence, that the murine neutrophil is largely a bystander in the mouse's response to vCXCL-1. We confirm the hypothesis that vCXCL-1 is a HCMV virulence factor. Infection of severely immunocompromised mice with MCMVs expressing vCXCL-1 was lethal in more than 50% of infected animals, while all animals infected with parental virus survived during a 12-day period. This work provides needed insights into vCXCL-1 function in vivo.


Assuntos
Quimiocina CXCL1/imunologia , Infecções por Citomegalovirus/imunologia , Citomegalovirus/imunologia , Muromegalovirus/imunologia , Neutrófilos/virologia , Animais , Quimiocina CXCL1/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Cinética , Camundongos , Camundongos Endogâmicos BALB C , Muromegalovirus/patogenicidade , Neutrófilos/imunologia , Receptores de Interleucina-8B/genética , Receptores de Interleucina-8B/imunologia , Fatores de Virulência/imunologia , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA