Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Breast Cancer Res Treat ; 178(2): 451-458, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31422497

RESUMO

INTRODUCTION: Ki-67 labeling index assessed by immunohistochemical assays has been shown useful in assessing the risk of recurrence for estrogen receptor (ER)-positive HER2-negative breast cancers (BC) and distinguishing Luminal A-like from Luminal B-like tumors. We aimed to assess the performance of the Ventana CONFIRM anti-Ki-67 (30-9) Rabbit Monoclonal Primary Antibody. METHODS: We constructed a case-cohort design based on a random sample (n = 679) of all patients operated on for a first primary, non-metastatic, ER-positive, HER2-negative BC at the European Institute of Oncology (IEO) Milan, Italy during 1998-2002 and all additional patients (n = 303) operated during the same period, who developed an event (metastasis in distant organs or death due to BC as primary event) and were not included in the previous subset. Multivariable Cox proportional hazards regression with inverse subcohort sampling probability weighting was used to evaluate the risk of event according to Ki-67 (30-9) and derived intrinsic molecular subtype, using previously defined cutoff values, i.e., respectively 14% and 20%. RESULTS: Ki-67 was < 14% in 318 patients (32.4%), comprised between 14 and 19% in 245 patients (24.9%) and ≥ 20 in 419 patients (42.7%). At multivariable analysis, the risk of developing distant disease was 1.88 (95% CI 1.20-2.93; P = 0.006) for those with Ki-67 comprised between 14 and 19%, and 3.06 (95% CI 1.93-4.84; P < 0.0001) for those with Ki-67 ≥ 20% compared to those with Ki-67 < 14%. Patients with Luminal B-like BC had an approximate twofold risk of developing distant disease (HR = 1.91; 95% CI 1.35-2.71; P = 0.0003) than patients with Luminal A-like BC defined using Ki-67 (30-9). CONCLUSIONS: Ki-67 evaluation using the 30-9 rabbit monoclonal primary antibody was able to stratify patients with ER-positive HER2-negative BC into prognostically distinct groups. Ki-67 assessment, with strict adherence to the international recommendations, should be included among the clinically useful biological parameters for the best treatment of patients with BC.


Assuntos
Biomarcadores Tumorais , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/etiologia , Diferenciação Celular , Antígeno Ki-67/metabolismo , Neoplasias da Mama/mortalidade , Estudos de Casos e Controles , Feminino , Humanos , Gradação de Tumores , Estadiamento de Neoplasias , Modelos de Riscos Proporcionais
2.
Nature ; 467(7316): 707-10, 2010 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-20861837

RESUMO

Mononucleated and binucleated polyploid hepatocytes (4n, 8n, 16n and higher) are found in all mammalian species, but the functional significance of this conserved phenomenon remains unknown. Polyploidization occurs through failed cytokinesis, begins at weaning in rodents and increases with age. Previously, we demonstrated that the opposite event, ploidy reversal, also occurs in polyploid hepatocytes generated by artificial cell fusion. This raised the possibility that somatic 'reductive mitoses' can also happen in normal hepatocytes. Here we show that multipolar mitotic spindles form frequently in mouse polyploid hepatocytes and can result in one-step ploidy reversal to generate offspring with halved chromosome content. Proliferating hepatocytes produce a highly diverse population of daughter cells with multiple numerical chromosome imbalances as well as uniparental origins. Our findings support a dynamic model of hepatocyte polyploidization, ploidy reversal and aneuploidy, a phenomenon that we term the 'ploidy conveyor'. We propose that this mechanism evolved to generate genetic diversity and permits adaptation of hepatocytes to xenobiotic or nutritional injury.


Assuntos
Variação Genética , Hepatócitos/citologia , Hepatócitos/metabolismo , Modelos Genéticos , Poliploidia , Adaptação Fisiológica , Aneuploidia , Animais , Segregação de Cromossomos , Citometria de Fluxo , Hibridização in Situ Fluorescente , Cariotipagem , Masculino , Camundongos , Mitose , Fuso Acromático/metabolismo
3.
Chromosome Res ; 22(3): 375-92, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24981203

RESUMO

Chromosome aberrations (aneuploidies mostly) are the cause of the majority of spontaneous abortions in humans. However, little is known about defects in the underlying molecular mechanisms resulting in chromosome aberrations and following failure of preimplantation embryo development, initiation of implantation and postimplantation pregnancy loss. We suggest that defects of the spindle assembly checkpoint (SAC) are responsible for aneuploidy and the following abortions. To develop our hypothesis, we modeled this process in the mouse after inactivation of protein BubR1, one of the key players of SAC. We found that soon after implantation, more than 50 % of cells of BubR1 (-/-) embryos were aneuploid and had an increased level of premature sister chromatid separation (PSCS). Aneuploid cells do not have a predominant gain or loss of some specific chromosomes, but they have mosaic variegated aneuploidy (MVA), which is characterised by random mixture of different chromosomes. MVA leads to growth retardation, stochastic massive apoptosis, disruption of bilateral symmetry, and embryo death between embryonic days 7.5 to 13.5. Analysis published human data revealed that human recurrent pregnancy loss (RPL) embryos and rare infant patients carrying BubR1 mutations that have been described so far have the PSCS and MVA as in BubR1 deficient/insufficient mice. Based on this data, we predict that deficiency/insufficiency of BubR1 and other components of the SAC in human are responsible for a significant fraction of both early and late RPLs.


Assuntos
Aneuploidia , Proteínas de Ciclo Celular/deficiência , Perda do Embrião/genética , Embrião de Mamíferos/anormalidades , Mosaicismo/embriologia , Proteínas Serina-Treonina Quinases/deficiência , Animais , Proteínas de Ciclo Celular/metabolismo , Bandeamento Cromossômico , Embrião de Mamíferos/patologia , Feminino , Marcação de Genes , Haploinsuficiência/genética , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitose , Fenótipo , Gravidez , Proteínas Serina-Treonina Quinases/metabolismo , Cariotipagem Espectral
4.
Blood ; 120(2): 323-34, 2012 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-22653977

RESUMO

Bone marrow failure is a nearly universal complication of Fanconi anemia. The proteins encoded by FANC genes are involved in DNA damage responses through the formation of a multisubunit nuclear complex that facilitates the E3 ubiquitin ligase activity of FANCL. However, it is not known whether loss of E3 ubiquitin ligase activity accounts for the hematopoietic stem cell defects characteristic of Fanconi anemia. Here we provide evidence that FANCL increases the activity and expression of ß-catenin, a key pluripotency factor in hematopoietic stem cells. We show that FANCL ubiquitinates ß-catenin with atypical ubiquitin chain extension known to have nonproteolytic functions. Specifically, ß-catenin modified with lysine-11 ubiquitin chain extension efficiently activates a lymphocyte enhancer-binding factor-T cell factor reporter. We also show that FANCL-deficient cells display diminished capacity to activate ß-catenin leading to reduced transcription of Wnt-responsive targets c-Myc and Cyclin D1. Suppression of FANCL expression in normal human CD34(+) stem and progenitor cells results in fewer ß-catenin active cells and inhibits expansion of multilineage progenitors. Together, these results suggest that diminished Wnt/ß-catenin signaling may be an underlying molecular defect in FANCL-deficient hematopoietic stem cells leading to their accelerated loss.


Assuntos
Proteína do Grupo de Complementação L da Anemia de Fanconi/metabolismo , beta Catenina/metabolismo , Animais , Linhagem Celular , Núcleo Celular/metabolismo , Ciclina D1/metabolismo , Anemia de Fanconi/etiologia , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Anemia de Fanconi/patologia , Proteína do Grupo de Complementação C da Anemia de Fanconi/deficiência , Proteína do Grupo de Complementação C da Anemia de Fanconi/genética , Proteína do Grupo de Complementação C da Anemia de Fanconi/metabolismo , Proteína do Grupo de Complementação L da Anemia de Fanconi/deficiência , Proteína do Grupo de Complementação L da Anemia de Fanconi/genética , Sangue Fetal/citologia , Sangue Fetal/metabolismo , Células HEK293 , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/patologia , Humanos , Camundongos , Camundongos Knockout , Modelos Biológicos , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/patologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Fatores de Transcrição TCF/metabolismo , Ubiquitinação , beta Catenina/química
5.
Gastroenterology ; 142(1): 25-8, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22057114

RESUMO

Murine hepatocytes become polyploid and then undergo ploidy reversal and become aneuploid in a dynamic process called the ploidy conveyor. Although polyploidization occurs in some types of human cells, the degree of aneuploidy in human hepatocytes is not known. We isolated hepatocytes derived from healthy human liver samples and determined chromosome number and identity using traditional karyotyping and fluorescence in situ hybridization. Similar to murine hepatocytes, human hepatocytes are highly aneuploid. Moreover, imaging studies revealed multipolar spindles and chromosome segregation defects in dividing human hepatocytes. Aneuploidy therefore does not necessarily predispose liver cells to transformation but might promote genetic diversity among hepatocytes.


Assuntos
Aneuploidia , Cromossomos Humanos , Variação Genética , Hepatócitos/patologia , Adolescente , Adulto , Idoso , Animais , Criança , Pré-Escolar , Feminino , Hepatócitos/transplante , Humanos , Hidrolases/deficiência , Hidrolases/genética , Hibridização in Situ Fluorescente , Lactente , Cariotipagem , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Quimeras de Transplante , Adulto Jovem
6.
Oncol Ther ; 11(3): 343-360, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37330972

RESUMO

INTRODUCTION: Biomarker testing is increasingly crucial for patients with early-stage non-small cell lung cancer (eNSCLC). We explored biomarker test utilization and subsequent treatment in eNSCLC patients in the real-world setting. METHODS: Using COTA's oncology database, this retrospective observational study included adult patients ≥ 18 years old diagnosed with eNSCLC (disease stage 0-IIIA) between January 1, 2011 and December 31, 2021. Date of first eNSCLC diagnosis was the study index date. We reported testing rates by index year for patients who received any biomarker test within 6 months of eNSCLC diagnosis and by each molecular marker. We also evaluated treatments received among patients receiving the five most common biomarker tests. RESULTS: Among the 1031 eNSCLC patients included in the analysis, 764 (74.1%) received ≥ 1 biomarker test within 6 months of eNSCLC diagnosis. Overall, epidermal growth factor receptor (EGFR; 64%), anaplastic lymphoma kinase (ALK; 60%), programmed death receptor ligand 1 (PD-L1; 48%), ROS proto-oncogene 1 (ROS1; 46%), B-Raf proto-oncogene (40%), mesenchymal epithelial transition factor receptor (35%), Kirsten rat sarcoma viral oncogene (29%), RET proto-oncogene (22%), human epidermal growth factor receptor 2 (21%), and phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (20%) were the 10 most frequently tested biomarkers. The proportion of patients undergoing biomarker testing rose from 55.3% in 2011 to 88.1% in 2021. The most common testing methods were Sanger sequencing for EGFR (244, 37%), FISH (fluorescence in situ hybridization) for ALK (464, 75%) and ROS1 (357, 76%), immunohistochemical assay for PD-L1 (450, 90%), and next-generation sequencing testing for other biomarkers. Almost all the 763 patients who received the five most common biomarker tests had a test before the initiation of a systemic treatment. CONCLUSION: This study suggests a high biomarker testing rate among patients with eNSCLC in the US, with testing rates for various biomarkers increasing over the past decade, indicating a continuous trend towards the personalization of treatment decisions.

7.
Chromosome Res ; 19(4): 567-74, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21505852

RESUMO

An increasing interest in the molecular mechanisms governing cell division has resulted in the discovery of several groups of genes that participate in the regulation of mitosis and meiosis in eukaryotes. Inactivation of these genes in mice often leads to early embryonic lethality. To show direct causality between mutations of these genes, chromosomal instability and embryonic death, a technique enabling detailed cytogenetic analysis of embryonic cells is required. Here, we develop and test a comprehensive approach that allows complex analysis of individual early postimplantation embryos and combines polymerase chain reaction genotyping with the preparation and detailed karyotypic inspection of cells at the metaphase and anaphase stages. The method enables good chromosomal spreading and scattering of nuclei to perform routine cytogenetics (i.e., standard stain and G-banding). It also permits the application of specialized techniques such as fluorescence in situ hybridization to detect particular chromosomes and to verify the integrity of individual chromosomes. Utility of the new method is demonstrated by an analysis of embryonic day E7.5-E9.5 tissue from mice deficient in the spindle checkpoint gene Bub1b.


Assuntos
Análise Citogenética , Perda do Embrião/genética , Animais , Proteínas de Ciclo Celular , Bandeamento Cromossômico , Cromossomos de Mamíferos/genética , Feminino , Cariotipagem , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Gravidez , Proteínas Serina-Treonina Quinases/genética
8.
J Clin Invest ; 122(9): 3307-15, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22863619

RESUMO

Over half of the mature hepatocytes in mice and humans are aneuploid and yet retain full ability to undergo mitosis. This observation has raised the question of whether this unusual somatic genetic variation evolved as an adaptive mechanism in response to hepatic injury. According to this model, hepatotoxic insults select for hepatocytes with specific numerical chromosome abnormalities, rendering them differentially resistant to injury. To test this hypothesis, we utilized a strain of mice heterozygous for a mutation in the homogentisic acid dioxygenase (Hgd) gene located on chromosome 16. Loss of the remaining Hgd allele protects from fumarylacetoacetate hydrolase (Fah) deficiency, a genetic liver disease model. When adult mice heterozygous for Hgd and lacking Fah were exposed to chronic liver damage, injury-resistant nodules consisting of Hgd-null hepatocytes rapidly emerged. To determine whether aneuploidy played a role in this phenomenon, array comparative genomic hybridization (aCGH) and metaphase karyotyping were performed. Strikingly, loss of chromosome 16 was dramatically enriched in all mice that became completely resistant to tyrosinemia-induced hepatic injury. The frequency of chromosome 16-specific aneuploidy was approximately 50%. This result indicates that selection of a specific aneuploid karyotype can result in the adaptation of hepatocytes to chronic liver injury. The extent to which aneuploidy promotes hepatic adaptation in humans remains under investigation.


Assuntos
Adaptação Fisiológica , Aneuploidia , Fígado/fisiologia , Estresse Fisiológico , Animais , Proliferação de Células , Células Cultivadas , Cromossomos de Mamíferos/genética , Hibridização Genômica Comparativa , Variações do Número de Cópias de DNA , Feminino , Hepatócitos/fisiologia , Homogentisato 1,2-Dioxigenase/genética , Cariótipo , Fígado/citologia , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA