Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Chem Biol ; 8(7): 622-30, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22634635

RESUMO

Functional selectivity of G protein-coupled receptor (GPCR) ligands toward different downstream signals has recently emerged as a general hallmark of this receptor class. However, pleiotropic and crosstalk signaling of GPCRs makes functional selectivity difficult to decode. To look from the initial active receptor point of view, we developed new, highly sensitive and direct bioluminescence resonance energy transfer-based G protein activation probes specific for all G protein isoforms, and we used them to evaluate the G protein-coupling activity of [(1)Sar(4)Ile(8)Ile]-angiotensin II (SII), previously described as an angiotensin II type 1 (AT(1)) receptor-biased agonist that is G protein independent but ß-arrestin selective. By multiplexing assays sensing sequential signaling events, from receptor conformations to downstream signaling, we decoded SII as an agonist stabilizing a G protein-dependent AT(1A) receptor signaling module different from that of the physiological agonist angiotensin II, both in recombinant and primary cells. Thus, a biased agonist does not necessarily select effects from the physiological agonist but may instead stabilize and create a new distinct active pharmacological receptor entity.


Assuntos
Receptor Tipo 1 de Angiotensina/metabolismo , Técnicas Biossensoriais , Linhagem Celular , Proteínas de Ligação ao GTP/metabolismo , Humanos , Conformação Proteica , Receptor Tipo 1 de Angiotensina/agonistas , Receptor Tipo 1 de Angiotensina/química
2.
J Biol Chem ; 284(3): 1831-9, 2009 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-19017652

RESUMO

It has been suggested previously ( AbdAlla, S., Lother, H., and Quitterer, U. (2000) Nature 407, 94-98 ) that the angiotensin II type 1 receptor (AT1R) and the bradykinin B2 receptor (B2R) form constitutive heterodimers. Furthermore they demonstrate that AT1R signaling significantly increases in the presence of the B2R. These findings suggest that heterodimerization and potentiation of AT1R signaling is a universal phenomenon that occurs as a natural consequence of simultaneous expression of the two receptors. Hence this potential interaction is of great pharmacological and biological interest that adds an additional layer of complexity to the understanding of the cross-talk between the renin-angiotensin and kallikrein-kinin systems. Given the remarkable significance of this finding, scientists from four independent research groups have set out to reproduce and further examine the potential AT1R/B2R interaction. We have investigated functional potentiation by the B2R of AT1R signaling in three different cell lines using multiple assays including phosphoinositide hydrolysis, ERK activation, beta-arrestin recruitment, and receptor selection and amplification technology, and we have examined dimerization using bioluminescence resonance energy transfer and regulated secretion/aggregation technology. However, although both the AT1Rs and B2Rs were functional in our systems and the systems were fine tuned to detect small changes in receptor function, we failed to detect any functional modulation by or physical interaction between the two receptor proteins. In contrast to the previous observations, our data collectively suggest that AT1R/B2R heterodimerization does not occur as a natural consequence of their simultaneous expression in the same cell nor does the B2R influence the AT1R signaling.


Assuntos
Receptor Tipo 1 de Angiotensina/metabolismo , Receptor B2 da Bradicinina/metabolismo , Animais , Células COS , Chlorocebus aethiops , Dimerização , Regulação da Expressão Gênica/fisiologia , Humanos , Sistema Calicreína-Cinina/fisiologia , Camundongos , Células NIH 3T3 , Ratos , Receptor Tipo 1 de Angiotensina/genética , Receptor B2 da Bradicinina/genética , Sistema Renina-Angiotensina/fisiologia , Transdução de Sinais/fisiologia
3.
J Neurochem ; 102(6): 1758-1770, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17504263

RESUMO

Brain glutamate/glutamine cycling is incomplete without return of ammonia to glial cells. Previous studies suggest that alanine is an important carrier for ammonia transfer. In this study, we investigated alanine transport and metabolism in Guinea pig brain cortical tissue slices and prisms, in primary cultures of neurons and astrocytes, and in synaptosomes. Alanine uptake into astrocytes was largely mediated by system L isoform LAT2, whereas alanine uptake into neurons was mediated by Na(+)-dependent transporters with properties similar to system B(0) isoform B(0)AT2. To investigate the role of alanine transport in metabolism, its uptake was inhibited in cortical tissue slices under depolarizing conditions using the system L transport inhibitors 2-aminobicyclo[2.2.1]heptane-2-carboxylic acid and cycloleucine (1-aminocyclopentanecarboxylic acid; cLeu). The results indicated that alanine cycling occurs subsequent to glutamate/glutamine cycling and that a significant proportion of cycling occurs via amino acid transport system L. Our results show that system L isoform LAT2 is critical for alanine uptake into astrocytes. However, alanine does not provide any significant carbon for energy or neurotransmitter metabolism under the conditions studied.


Assuntos
Alanina/metabolismo , Amônia/metabolismo , Química Encefálica/fisiologia , Encéfalo/metabolismo , Ácido Glutâmico/metabolismo , Sistema y+ de Transporte de Aminoácidos/antagonistas & inibidores , Sistema y+ de Transporte de Aminoácidos/metabolismo , Animais , Animais Recém-Nascidos , Transporte Biológico Ativo/efeitos dos fármacos , Transporte Biológico Ativo/fisiologia , Química Encefálica/efeitos dos fármacos , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/metabolismo , Células Cultivadas , Metabolismo Energético/fisiologia , Inibidores Enzimáticos/farmacologia , Cadeias Leves da Proteína-1 Reguladora de Fusão , Cobaias , Camundongos , Neurotransmissores/biossíntese , Oócitos , Técnicas de Cultura de Órgãos , Terminações Pré-Sinápticas/efeitos dos fármacos , Terminações Pré-Sinápticas/metabolismo , Ratos , Transmissão Sináptica/fisiologia , Sinaptossomos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA