Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Cell ; 173(7): 1609-1621.e15, 2018 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-29754821

RESUMO

Diverse biological systems utilize fluctuations ("noise") in gene expression to drive lineage-commitment decisions. However, once a commitment is made, noise becomes detrimental to reliable function, and the mechanisms enabling post-commitment noise suppression are unclear. Here, we find that architectural constraints on noise suppression are overcome to stabilize fate commitment. Using single-molecule and time-lapse imaging, we find that-after a noise-driven event-human immunodeficiency virus (HIV) strongly attenuates expression noise through a non-transcriptional negative-feedback circuit. Feedback is established through a serial cascade of post-transcriptional splicing, whereby proteins generated from spliced mRNAs auto-deplete their own precursor unspliced mRNAs. Strikingly, this auto-depletion circuitry minimizes noise to stabilize HIV's commitment decision, and a noise-suppression molecule promotes stabilization. This feedback mechanism for noise suppression suggests a functional role for delayed splicing in other systems and may represent a generalizable architecture of diverse homeostatic signaling circuits.


Assuntos
Retroalimentação Fisiológica , HIV-1/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , HIV-1/genética , Humanos , Células Jurkat , Modelos Biológicos , Precursores de RNA/metabolismo , Processamento Pós-Transcricional do RNA , Splicing de RNA , Imagem com Lapso de Tempo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética
2.
Bioessays ; 45(12): e2300130, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37926676

RESUMO

Co-expression of two or more genes at the single-cell level is usually associated with functional co-regulation. While mRNA co-expression-measured as the correlation in mRNA levels-can be influenced by both transcriptional and post-transcriptional events, transcriptional regulation is typically considered dominant. We review and connect the literature describing transcriptional and post-transcriptional regulation of co-expression. To enhance our understanding, we integrate four datasets spanning single-cell gene expression data, single-cell promoter activity data and individual transcript half-lives. Confirming expectations, we find that positive co-expression necessitates promoter coordination and similar mRNA half-lives. Surprisingly, negative co-expression is favored by differences in mRNA half-lives, contrary to initial predictions from stochastic simulations. Notably, this association manifests specifically within clusters of genes. We further observe a striking compensation between promoter coordination and mRNA half-lives, which additional stochastic simulations suggest might give rise to the observed co-expression patterns. These findings raise intriguing questions about the functional advantages conferred by this compensation between distal kinetic steps.


Assuntos
Regulação da Expressão Gênica , Transcrição Gênica , Regulação da Expressão Gênica/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Cinética , Meia-Vida , Regiões Promotoras Genéticas/genética
3.
Plant J ; 114(1): 159-175, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36710658

RESUMO

The Arabidopsis COP1/SPA ubiquitin ligase suppresses photomorphogenesis in darkness. In the light, photoreceptors inactivate COP1/SPA to allow a light response. While SPA genes are specific to the green lineage, COP1 also exists in humans. This raises the question of when in evolution plant COP1 acquired the need for SPA accessory proteins. We addressed this question by generating Physcomitrium Ppcop1 mutants and comparing their visible and molecular phenotypes with those of Physcomitrium Ppspa mutants. The phenotype of Ppcop1 nonuple mutants resembles that of Ppspa mutants. Most importantly, both mutants produce green chloroplasts in complete darkness. They also exhibit dwarfed gametophores, disturbed branching of protonemata and absent gravitropism. RNA-sequencing analysis indicates that both mutants undergo weak constitutive light signaling in darkness. PpCOP1 and PpSPA proteins form a complex and they interact via their WD repeat domains with the VP motif of the cryptochrome CCE domain in a blue light-dependent manner. This resembles the interaction of Arabidopsis SPA proteins with Arabidopsis CRY1, and is different from that with Arabidopsis CRY2. Taken together, the data indicate that PpCOP1 and PpSPA act together to regulate growth and development of Physcomitrium. However, in contrast to their Arabidopsis orthologs, PpCOP1 and PpSPA proteins execute only partial suppression of light signaling in darkness. Hence, additional repressors may exist that contribute to the repression of a light response in dark-exposed Physcomitrium.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Bryopsida , Humanos , Arabidopsis/metabolismo , Criptocromos/genética , Criptocromos/metabolismo , Proteínas de Arabidopsis/metabolismo , Bryopsida/genética , Bryopsida/metabolismo , Transdução de Sinal Luminoso/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Regulação da Expressão Gênica de Plantas
4.
Bioessays ; 41(7): e1900044, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31222776

RESUMO

Recent evidence indicates that transcriptional bursts are intrinsically amplified by messenger RNA cytoplasmic processing to generate large stochastic fluctuations in protein levels. These fluctuations can be exploited by cells to enable probabilistic bet-hedging decisions. But large fluctuations in gene expression can also destabilize cell-fate commitment. Thus, it is unclear if cells temporally switch from high to low noise, and what mechanisms enable this switch. Here, the discovery of a post-transcriptional mechanism that attenuates noise in HIV is reviewed. Early in its life cycle, HIV amplifies transcriptional fluctuations to probabilistically select alternate fates, whereas at late times, HIV utilizes a post-transcriptional feedback mechanism to commit to a specific fate. Reanalyzing various reported post-transcriptional negative feedback architectures reveals that they attenuate noise more efficiently than classic transcriptional autorepression, leading to the derivation of an assay to detect post-transcriptional motifs. It is hypothesized that coupling transcriptional and post-transcriptional autoregulation enables efficient temporal noise control to benefit developmental bet-hedging decisions.


Assuntos
Retroalimentação Fisiológica/fisiologia , Regulação da Expressão Gênica/genética , Transcrição Gênica/genética , HIV-1/genética , HIV-1/metabolismo , Humanos , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética
5.
PLoS Biol ; 15(10): e2000841, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29045398

RESUMO

Fundamental to biological decision-making is the ability to generate bimodal expression patterns where 2 alternate expression states simultaneously exist. Here, we use a combination of single-cell analysis and mathematical modeling to examine the sources of bimodality in the transcriptional program controlling HIV's fate decision between active replication and viral latency. We find that the HIV transactivator of transcription (Tat) protein manipulates the intrinsic toggling of HIV's promoter, the long terminal repeat (LTR), to generate bimodal ON-OFF expression and that transcriptional positive feedback from Tat shifts and expands the regime of LTR bimodality. This result holds for both minimal synthetic viral circuits and full-length virus. Strikingly, computational analysis indicates that the Tat circuit's noncooperative "nonlatching" feedback architecture is optimized to slow the promoter's toggling and generate bimodality by stochastic extinction of Tat. In contrast to the standard Poisson model, theory and experiment show that nonlatching positive feedback substantially dampens the inverse noise-mean relationship to maintain stochastic bimodality despite increasing mean expression levels. Given the rapid evolution of HIV, the presence of a circuit optimized to robustly generate bimodal expression appears consistent with the hypothesis that HIV's decision between active replication and latency provides a viral fitness advantage. More broadly, the results suggest that positive-feedback circuits may have evolved not only for signal amplification but also for robustly generating bimodality by decoupling expression fluctuations (noise) from mean expression levels.


Assuntos
Retroalimentação Fisiológica , Regulação Viral da Expressão Gênica/genética , HIV-1/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética , Algoritmos , Citometria de Fluxo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Infecções por HIV/virologia , Repetição Terminal Longa de HIV/genética , HIV-1/fisiologia , Humanos , Células Jurkat , Microscopia Confocal , Modelos Genéticos , Regiões Promotoras Genéticas/genética , Análise de Célula Única/métodos , Processos Estocásticos , Transcrição Gênica , Latência Viral
6.
Chembiochem ; 17(3): 228-32, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26603600

RESUMO

In highly crowded and viscous intracellular environments, the kinetics of complex enzymatic reactions are determined by both reaction and diffusion rates. However in vitro studies on transcription and translation often fail to take into account the density of the prokaryotic cytoplasm. Here we mimic the cellular environment by using a porous hydrogel matrix, to study the effects of macromolecular crowding on gene expression. We found that within microgels gene expression is localized, transcription is enhanced up to fivefold, and translation is enhanced up to fourfold. Our results highlight the need to consider the role of the physical environment on complex biochemical reactions, in this case macromolecular crowding, nanoscale spatial organization, and confinement.


Assuntos
Nanoestruturas/química , Biossíntese de Proteínas , Proteínas/metabolismo , Transcrição Gênica , DNA/metabolismo , Difusão , Recuperação de Fluorescência Após Fotodegradação , Hidrogéis/química , Cinética , Técnicas Analíticas Microfluídicas , Porosidade
7.
Proc Natl Acad Sci U S A ; 110(29): 11692-7, 2013 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-23818642

RESUMO

Liquid-liquid phase transitions in complex mixtures of proteins and other molecules produce crowded compartments supporting in vitro transcription and translation. We developed a method based on picoliter water-in-oil droplets to induce coacervation in Escherichia coli cell lysate and follow gene expression under crowded and noncrowded conditions. Coacervation creates an artificial cell-like environment in which the rate of mRNA production is increased significantly. Fits to the measured transcription rates show a two orders of magnitude larger binding constant between DNA and T7 RNA polymerase, and five to six times larger rate constant for transcription in crowded environments, strikingly similar to in vivo rates. The effect of crowding on interactions and kinetics of the fundamental machinery of gene expression has a direct impact on our understanding of biochemical networks in vivo. Moreover, our results show the intrinsic potential of cellular components to facilitate macromolecular organization into membrane-free compartments by phase separation.


Assuntos
Células Artificiais , Substâncias Macromoleculares/química , Transcrição Gênica/fisiologia , Escherichia coli , Interações Hidrofóbicas e Hidrofílicas , Microscopia de Fluorescência , Modelos Biológicos , Transição de Fase
8.
STAR Protoc ; 5(3): 103284, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39217608

RESUMO

Quantifying the number of proteins that interact with mRNAs, in particular with poly(A) tails of mRNAs, is crucial for understanding gene regulation. Biochemical assays offer significant advantages for this purpose. Here, we present a protocol for synthesizing mRNAs with accurate, length-specific poly(A) tails through a PCR-based approach. We also describe steps for an in vitro (i.e., cell-free) approach for visualizing the sequential binding of Cytoplasmic Poly(A)-Binding Proteins (PABPCs) to these poly(A) tails. We detail quality control steps throughout the procedure. For complete details on the use and execution of this protocol, please refer to Grandi et al.1.


Assuntos
Bioquímica , Poli A , Proteínas de Ligação a Poli(A) , RNA Mensageiro , Humanos , Poli A/metabolismo , Proteínas de Ligação a Poli(A)/metabolismo , Proteínas de Ligação a Poli(A)/genética , Reação em Cadeia da Polimerase/métodos , Ligação Proteica , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Transcrição Gênica/genética , Bioquímica/métodos
9.
STAR Protoc ; 5(4): 103336, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39356640

RESUMO

Understanding the molecular signatures of individual cells within complex biological systems is crucial for deciphering cellular heterogeneity and uncovering regulatory mechanisms. Here, we present a protocol for simultaneous multiplexed detection of selected mRNAs and (phospho-)proteins in mouse embryonic stem cells using spatial single-cell profiling. We describe steps for employing single-stranded DNA (ssDNA)-labeled antibo'dies, padlock probes, and rolling circle amplification to achieve simultaneous visualization of mRNAs and (phospho-)proteins at subcellular resolution. This protocol has potential application in identifying cells in heterogeneous biological microenvironments. For complete details on the use and execution of this protocol, please refer to Hu et al.1.

10.
Nat Commun ; 15(1): 3918, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724524

RESUMO

Differences in gene-expression profiles between individual cells can give rise to distinct cell fate decisions. Yet how localisation on a micropattern impacts initial changes in mRNA, protein, and phosphoprotein abundance remains unclear. To identify the effect of cellular position on gene expression, we developed a scalable antibody and mRNA targeting sequential fluorescence in situ hybridisation (ARTseq-FISH) method capable of simultaneously profiling mRNAs, proteins, and phosphoproteins in single cells. We studied 67 (phospho-)protein and mRNA targets in individual mouse embryonic stem cells (mESCs) cultured on circular micropatterns. ARTseq-FISH reveals relative changes in both abundance and localisation of mRNAs and (phospho-)proteins during the first 48 hours of exit from pluripotency. We confirm these changes by conventional immunofluorescence and time-lapse microscopy. Chemical labelling, immunofluorescence, and single-cell time-lapse microscopy further show that cells closer to the edge of the micropattern exhibit increased proliferation compared to cells at the centre. Together these data suggest that while gene expression is still highly heterogeneous position-dependent differences in mRNA and protein levels emerge as early as 12 hours after LIF withdrawal.


Assuntos
Hibridização in Situ Fluorescente , Células-Tronco Embrionárias Murinas , RNA Mensageiro , Animais , Hibridização in Situ Fluorescente/métodos , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Células-Tronco Embrionárias Murinas/citologia , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Análise de Célula Única/métodos , Imagem com Lapso de Tempo/métodos , Perfilação da Expressão Gênica/métodos , Diferenciação Celular
11.
Dev Cell ; 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39406240

RESUMO

Gene-expression noise can influence cell-fate choices across pathology and physiology. However, a crucial question persists: do regulatory proteins or pathways exist that control noise independently of mean expression levels? Our integrative approach, combining single-cell RNA sequencing with proteomics and regulator enrichment analysis, identifies 32 putative noise regulators. SON, a nuclear speckle-associated protein, alters transcriptional noise without changing mean expression levels. Furthermore, SON's noise control can propagate to the protein level. Long-read and total RNA sequencing shows that SON's noise control does not significantly change isoform usage or splicing efficiency. Moreover, SON depletion reduces state switching in pluripotent mouse embryonic stem cells and impacts their fate choice during differentiation. Collectively, we demonstrate a class of proteins that control noise orthogonally to mean expression levels. This work serves as a proof of concept that can identify other functional noise regulators throughout development and disease progression.

12.
Cell Syst ; 15(6): 526-543.e7, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38901403

RESUMO

Poly(A) tails are crucial for mRNA translation and degradation, but the exact relationship between tail length and mRNA kinetics remains unclear. Here, we employ a small library of identical mRNAs that differ only in their poly(A)-tail length to examine their behavior in human embryonic kidney cells. We find that tail length strongly correlates with mRNA degradation rates but is decoupled from translation. Interestingly, an optimal tail length of ∼100 nt displays the highest translation rate, which is identical to the average endogenous tail length measured by nanopore sequencing. Furthermore, poly(A)-tail length variability-a feature of endogenous mRNAs-impacts translation efficiency but not mRNA degradation rates. Stochastic modeling combined with single-cell tracking reveals that poly(A) tails provide cells with an independent handle to tune gene expression fluctuations by decoupling mRNA degradation and translation. Together, this work contributes to the basic understanding of gene expression regulation and has potential applications in nucleic acid therapeutics.


Assuntos
Poli A , Biossíntese de Proteínas , Estabilidade de RNA , RNA Mensageiro , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Poli A/metabolismo , Poli A/genética , Biossíntese de Proteínas/genética , Estabilidade de RNA/genética , Células HEK293 , Regulação da Expressão Gênica/genética
13.
Nat Commun ; 15(1): 640, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245532

RESUMO

Considerable progress has been made in understanding the molecular host-virus battlefield during SARS-CoV-2 infection. Nevertheless, the assembly and egress of newly formed virions are less understood. To identify host proteins involved in viral morphogenesis, we characterize the proteome of SARS-CoV-2 virions produced from A549-ACE2 and Calu-3 cells, isolated via ultracentrifugation on sucrose cushion or by ACE-2 affinity capture. Bioinformatic analysis unveils 92 SARS-CoV-2 virion-associated host factors, providing a valuable resource to better understand the molecular environment of virion production. We reveal that G3BP1 and G3BP2 (G3BP1/2), two major stress granule nucleators, are embedded within virions and unexpectedly favor virion production. Furthermore, we show that G3BP1/2 participate in the formation of cytoplasmic membrane vesicles, that are likely virion assembly sites, consistent with a proviral role of G3BP1/2 in SARS-CoV-2 dissemination. Altogether, these findings provide new insights into host factors required for SARS-CoV-2 assembly with potential implications for future therapeutic targeting.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Replicação Viral , DNA Helicases/metabolismo , Proteômica , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , COVID-19/metabolismo , RNA Helicases/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Montagem de Vírus , Vírion/metabolismo
14.
ACS Synth Biol ; 12(8): 2217-2225, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37478000

RESUMO

Biochemical reactions that involve small numbers of molecules are accompanied by a degree of inherent randomness that results in noisy reaction outcomes. In synthetic biology, the ability to minimize noise particularly during the reconstitution of future synthetic protocells is an outstanding challenge to secure robust and reproducible behavior. Here we show that by encapsulation of a bacterial cell-free gene expression system in water-in-oil droplets, in vitro-synthesized MazF reduces cell-free gene expression noise >2-fold. With stochastic simulations we identify that this noise minimization acts through both increased degradation and the autoregulatory feedback of MazF. Specifically, we find that the expression of MazF enhances the degradation rate of mRNA up to 18-fold in a sequence-dependent manner. This sequence specificity of MazF would allow targeted noise control, making it ideal to integrate into synthetic gene networks. Therefore, including MazF production in synthetic biology can significantly minimize gene expression noise, impacting future design principles of more complex cell-free gene circuits.


Assuntos
Fenômenos Fisiológicos Celulares , Redes Reguladoras de Genes , Redes Reguladoras de Genes/genética , Homeostase , Expressão Gênica , Endorribonucleases/genética
15.
Nat Plants ; 9(9): 1419-1438, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37640935

RESUMO

Plant terrestrialization brought forth the land plants (embryophytes). Embryophytes account for most of the biomass on land and evolved from streptophyte algae in a singular event. Recent advances have unravelled the first full genomes of the closest algal relatives of land plants; among the first such species was Mesotaenium endlicherianum. Here we used fine-combed RNA sequencing in tandem with a photophysiological assessment on Mesotaenium exposed to a continuous range of temperature and light cues. Our data establish a grid of 42 different conditions, resulting in 128 transcriptomes and ~1.5 Tbp (~9.9 billion reads) of data to study the combinatory effects of stress response using clustering along gradients. Mesotaenium shares with land plants major hubs in genetic networks underpinning stress response and acclimation. Our data suggest that lipid droplet formation and plastid and cell wall-derived signals have denominated molecular programmes since more than 600 million years of streptophyte evolution-before plants made their first steps on land.


Assuntos
Aclimatação , Parede Celular , Biomassa , Redes Reguladoras de Genes
16.
Nat Commun ; 13(1): 66, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013187

RESUMO

The Human Silencing Hub (HUSH) complex constituted of TASOR, MPP8 and Periphilin recruits the histone methyl-transferase SETDB1 to spread H3K9me3 repressive marks across genes and transgenes in an integration site-dependent manner. The deposition of these repressive marks leads to heterochromatin formation and inhibits gene expression, but the underlying mechanism is not fully understood. Here, we show that TASOR silencing or HIV-2 Vpx expression, which induces TASOR degradation, increases the accumulation of transcripts derived from the HIV-1 LTR promoter at a post-transcriptional level. Furthermore, using a yeast 2-hybrid screen, we identify new TASOR partners involved in RNA metabolism including the RNA deadenylase CCR4-NOT complex scaffold CNOT1. TASOR and CNOT1 synergistically repress HIV expression from its LTR. Similar to the RNA-induced transcriptional silencing complex found in fission yeast, we show that TASOR interacts with the RNA exosome and RNA Polymerase II, predominantly under its elongating state. Finally, we show that TASOR facilitates the association of RNA degradation proteins with RNA polymerase II and is detected at transcriptional centers. Altogether, we propose that HUSH operates at the transcriptional and post-transcriptional levels to repress HIV proviral expression.


Assuntos
Repressão Epigenética , HIV-2/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Estabilidade de RNA , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Montagem e Desmontagem da Cromatina , Expressão Gênica , Inativação Gênica , Infecções por HIV/virologia , Repetição Terminal Longa de HIV , Células HeLa , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Humanos , Fosfoproteínas , Provírus/genética , RNA Polimerase II/metabolismo , Schizosaccharomyces
17.
Science ; 373(6557)2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34301855

RESUMO

Stochastic fluctuations in gene expression ("noise") are often considered detrimental, but fluctuations can also be exploited for benefit (e.g., dither). We show here that DNA base excision repair amplifies transcriptional noise to facilitate cellular reprogramming. Specifically, the DNA repair protein Apex1, which recognizes both naturally occurring and unnatural base modifications, amplifies expression noise while homeostatically maintaining mean expression levels. This amplified expression noise originates from shorter-duration, higher-intensity transcriptional bursts generated by Apex1-mediated DNA supercoiling. The remodeling of DNA topology first impedes and then accelerates transcription to maintain mean levels. This mechanism, which we refer to as "discordant transcription through repair" ("DiThR," which is pronounced "dither"), potentiates cellular reprogramming and differentiation. Our study reveals a potential functional role for transcriptional fluctuations mediated by DNA base modifications in embryonic development and disease.


Assuntos
Diferenciação Celular , Reprogramação Celular , Reparo do DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , DNA/química , Expressão Gênica , Transcrição Gênica , Animais , Células Cultivadas , Simulação por Computador , DNA/genética , DNA/metabolismo , Células-Tronco Embrionárias , Expressão Gênica/efeitos dos fármacos , Idoxuridina/metabolismo , Idoxuridina/farmacologia , Camundongos , Modelos Genéticos , Proteína Homeobox Nanog/genética , Conformação de Ácido Nucleico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Célula Única , Processos Estocásticos , Timidina Quinase/genética , Timidina Quinase/metabolismo , Transcrição Gênica/efeitos dos fármacos
18.
J Fungi (Basel) ; 7(1)2020 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-33383948

RESUMO

Plant pathogens secrete a variety of effector proteins that enable host colonization but are also typical pathogen detection targets for the host immune system. Consequently, effector genes encounter high selection pressures, which typically makes them fast evolving. The corn smut pathogen Ustilago maydis has an effector gene repertoire with a dynamic expression across the different disease stages. We determined the amino acid divergence of U. maydis effector candidates with Sporisorium reilianum orthologs, a close relative of U. maydis. Intriguingly, there are two distinct groups of effector candidates, ones with a respective conserved and diverged protein evolution. Conservatively evolving effector genes especially have their peak expression during the (pre-)penetration stages of the disease cycle. In contrast, expression of divergently evolving effector genes generally peaks during fungal proliferation within the host. To test if this interspecific effector diversity corresponds to intraspecific diversity, we sampled and sequenced a diverse collection of U. maydis strains from the most important maize breeding and production regions in China. Effector candidates with a diverged interspecific evolution had more intraspecific amino acid variation than candidates with a conserved evolution. In conclusion, we highlight diversity in evolution within the U. maydis effector repertoire with dynamically and conservatively evolving members.

19.
ACS Synth Biol ; 9(10): 2797-2807, 2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-32976714

RESUMO

The formation of cytomimetic protocells that capture the physicochemical aspects of living cells is an important goal in bottom-up synthetic biology. Here, we recreated the crowded cytoplasm in liposome-based protocells and studied the kinetics of cell-free gene expression in these crowded containers. We found that diffusion of key components is affected not only by macromolecular crowding but also by enzymatic activity in the protocell. Surprisingly, size-dependent diffusion in crowded conditions yielded two distinct maxima for protein synthesis, reflecting the differential impact of crowding on transcription and translation. Our experimental data show, for the first time, that macromolecular crowding induces a switch from reaction to diffusion control and that this switch depends on the sizes of the macromolecules involved. These results highlight the need to control the physical environment in the design of synthetic cells.


Assuntos
Células Artificiais/metabolismo , Citoplasma/metabolismo , Expressão Gênica , Proteínas de Fluorescência Verde/metabolismo , Lipossomos/metabolismo , Biossíntese de Proteínas/genética , Transcrição Gênica/genética , Sistema Livre de Células/metabolismo , Difusão , Cinética , Microfluídica/métodos , Polímeros/metabolismo , Biologia Sintética/métodos
20.
Cell Host Microbe ; 26(6): 703-705, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31951580

RESUMO

Proviral latency is a major barrier to a cure for HIV. In this issue of Cell Host & Microbe, Hataye et al. (2019) show that reactivation of HIV latency is a non-deterministic, highly stochastic (i.e., noisy) process and propose that stochastic transitions to exponential viral expansion require a critical threshold of virus.


Assuntos
Infecções por HIV , HIV-1 , Humanos , Provírus , Latência Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA