Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Hum Mol Genet ; 27(10): 1763-1771, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29528396

RESUMO

Offspring of women with diabetes in pregnancy exhibit skeletal muscle insulin resistance and are at increased risk of developing type 2 diabetes, potentially mediated by epigenetic mechanisms or changes in the expression of small non-coding microRNAs. Members of the miR-15 family can alter the expression or function of important proteins in the insulin signalling pathway, affecting insulin sensitivity and secretion. We hypothesized that exposure to maternal diabetes may cause altered expression of these microRNAs in offspring skeletal muscle, representing a potential underlying mechanism by which exposure to maternal diabetes leads to increased risk of cardiometabolic disease in offspring. We measured microRNA expression in skeletal muscle biopsies of 26- to 35-year-old offspring of women with either gestational diabetes (O-GDM, n = 82) or type 1 diabetes (O-T1DM, n = 67) in pregnancy, compared with a control group of offspring from the background population (O-BP, n = 57) from an observational follow-up study. Expression of both miR-15a and miR-15b was increased in skeletal muscle obtained from O-GDM (both P < 0.001) and O-T1DM (P = 0.024, P = 0.005, respectively) compared with O-BP. Maternal 2 h post OGTT glucose levels were positively associated with miR-15a expression (P = 0.041) in O-GDM after adjustment for confounders and mediators. In all groups collectively, miRNA expression was significantly positively associated with fasting plasma glucose, 2 h plasma glucose and HbA1c. We conclude that fetal exposure to maternal diabetes is associated with increased skeletal muscle expression of miR-15a and miR-15b and that this may contribute to development of metabolic disease in these subjects.


Assuntos
Diabetes Mellitus Tipo 2/genética , Diabetes Gestacional/genética , Epigênese Genética , MicroRNAs/genética , Adulto , Filhos Adultos , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/patologia , Diabetes Gestacional/sangue , Diabetes Gestacional/patologia , Feminino , Regulação da Expressão Gênica , Hemoglobinas Glicadas/genética , Humanos , Insulina/metabolismo , Resistência à Insulina/genética , Masculino , Músculo Esquelético/patologia , Gravidez
2.
Endocr Res ; 44(3): 110-116, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30721637

RESUMO

Aim: The TCF7L2 gene variant rs7903146 has the largest effect on type 2 diabetes risk reported in genome-wide association studies, however its role in adipose tissue development and function is unknown. We investigate the association between gene variant rs7903146 and metabolic parameters and examine in vitro and ex vivo gene expression of TCF7L2 in human adipose tissue and progenitor cells from two independent populations of young healthy men with increased risk of type 2 diabetes due to low birth weight (LBW). Design: Adipose tissue biopsies were excised from 40 healthy young men with low and normal birth weights (NBW) after a control and 5-day high-fat overfeeding diet. In another cohort including 13 LBW and 13 NBW men, adipocyte progenitor cells were isolated and cultivated. Transcriptome-wide expression was performed on RNA extracted from biopsies or cell cultures. Results: Diet-induced peripheral insulin resistance is more pronounced in carriers of the T-risk allele rs7903146, whereas no association with hepatic insulin resistance was shown. TCF7L2 expression increased during adipogenesis in isolated preadipocytes from both LBW and NBW men (p < 0.001) and correlated positively with markers of progenitor cell proliferation and maturation capacity. In the mature adipose tissue, LBW men had lower expression of TCF7L2 compared to NBW men at baseline (p = 0.03) and TCF7L2 expression was suppressed by short-term overfeeding in NBW men (p = 0.005). Conclusions: The results suggest a regulation of TCF7L2 expression during adipogenesis and in mature adipose tissue upon overfeeding, and further that young men exposed to an adverse intrauterine environment have reduced mature adipose tissue TCF7L2 expression.


Assuntos
Adipogenia/fisiologia , Tecido Adiposo/metabolismo , Diferenciação Celular/fisiologia , Dieta Hiperlipídica , Proteína 2 Semelhante ao Fator 7 de Transcrição/metabolismo , Adulto , Alelos , Estudos Cross-Over , Diabetes Mellitus Tipo 2/genética , Humanos , Recém-Nascido de Baixo Peso , Resistência à Insulina/fisiologia , Masculino , Proteína 2 Semelhante ao Fator 7 de Transcrição/genética , Adulto Jovem
3.
Diabetologia ; 59(12): 2664-2673, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27627980

RESUMO

AIMS/HYPOTHESIS: Low birthweight (LBW) is associated with dysfunctions of adipose tissue and metabolic disease in adult life. We hypothesised that altered epigenetic and transcriptional regulation of adipose-derived stem cells (ADSCs) could play a role in programming adipose tissue dysfunction in LBW individuals. METHODS: ADSCs were isolated from the subcutaneous adipose tissue of 13 normal birthweight (NBW) and 13 LBW adult men. The adipocytes were cultured in vitro, and genome-wide differences in RNA expression and DNA methylation profiles were analysed in ADSCs and differentiated adipocytes. RESULTS: We demonstrated that ADSCs from LBW individuals exhibit multiple expression changes as well as genome-wide alterations in methylation pattern. Reduced expression of the transcription factor cyclin T2 encoded by CCNT2 may play a key role in orchestrating several of the gene expression changes in ADSCs from LBW individuals. Indeed, silencing of CCNT2 in human adipocytes decreased leptin secretion as well as the mRNA expression of several genes involved in adipogenesis, including MGLL, LIPE, PPARG, LEP and ADIPOQ. Only subtle genome-wide mRNA expression and DNA methylation changes were seen in mature cultured adipocytes from LBW individuals. CONCLUSIONS/INTERPRETATION: Epigenetic and transcriptional changes in LBW individuals are most pronounced in immature ADSCs that in turn may programme physiological characteristics of the mature adipocytes that influence the risk of metabolic diseases. Reduced expression of CCNT2 may play a key role in the developmental programming of adipose tissue.


Assuntos
Adipócitos/metabolismo , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Metilação de DNA/genética , Epigênese Genética/genética , Células-Tronco/citologia , Células-Tronco/metabolismo , Adipogenia/genética , Adiponectina/genética , Adulto , Peso ao Nascer/genética , Peso ao Nascer/fisiologia , Células Cultivadas , Ciclina T/genética , Humanos , Masculino , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Fator de Transcrição STAT2/genética , Adulto Jovem
4.
Acta Obstet Gynecol Scand ; 93(11): 1099-108, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25179736

RESUMO

Low birthweight (LBW) individuals and offspring of women with gestational diabetes mellitus (GDM) exhibit increased risk of developing type 2 diabetes (T2D) and associated cardiometabolic traits in adulthood, which for both groups may be mediated by adverse events and developmental changes in fetal life. T2D is a multifactorial disease occurring as a result of complicated interplay between genetic and both prenatal and postnatal nongenetic factors, and it remains unknown to what extent the increased risk of T2D associated with LBW or GDM in the mother may be due to, or confounded by, genetic factors. Indeed, it has been shown that genetic changes influencing risk of diabetes may also be associated with reduced fetal growth as a result of reduced insulin secretion and/or action. Similarly, increased risk of T2D among offspring could be explained by T2D susceptibility genes shared between the mother and her offspring. Epigenetic mechanisms may explain the link between factors operating in fetal life and later risk of developing T2D, but so far convincing evidence is lacking for epigenetic changes as a prime and direct cause of T2D. This review addresses recent literature on the early origins of adult disease hypothesis, with a special emphasis on the role of genetic compared with nongenetic and epigenetic risk determinants and disease mechanisms.


Assuntos
Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/fisiopatologia , Diabetes Gestacional/fisiopatologia , Epigênese Genética/genética , Epigênese Genética/fisiologia , Desenvolvimento Fetal/genética , Desenvolvimento Fetal/fisiologia , Predisposição Genética para Doença/genética , Efeitos Tardios da Exposição Pré-Natal/genética , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Adulto , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Gestacional/epidemiologia , Feminino , Predisposição Genética para Doença/epidemiologia , Humanos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/epidemiologia , Fatores de Risco
5.
Aging Cell ; 22(3): e13763, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36617632

RESUMO

Intronic single-nucleotide polymorphisms (SNPs) in FOXO3A are associated with human longevity. Currently, it is unclear how these SNPs alter FOXO3A functionality and human physiology, thereby influencing lifespan. Here, we identify a primate-specific FOXO3A transcriptional isoform, FOXO3A-Short (FOXO3A-S), encoding a major longevity-associated SNP, rs9400239 (C or T), within its 5' untranslated region. The FOXO3A-S mRNA is highly expressed in the skeletal muscle and has very limited expression in other tissues. We find that the rs9400239 variant influences the stability and functionality of the primarily nuclear protein(s) encoded by the FOXO3A-S mRNA. Assessment of the relationship between the FOXO3A-S polymorphism and peripheral glucose clearance during insulin infusion (Rd clamp) in a cohort of Danish twins revealed that longevity T-allele carriers have markedly faster peripheral glucose clearance rates than normal lifespan C-allele carriers. In vitro experiments in human myotube cultures utilizing overexpression of each allele showed that the C-allele represses glycolysis independently of PI3K signaling, while overexpression of the T-allele represses glycolysis only in a PI3K-inactive background. Supporting this finding inducible knockdown of the FOXO3A-S C-allele in cultured myotubes increases the glycolytic rate. We conclude that the rs9400239 polymorphism acts as a molecular switch which changes the identity of the FOXO3A-S-derived protein(s), which in turn alters the relationship between FOXO3A-S and insulin/PI3K signaling and glycolytic flux in the skeletal muscle. This critical difference endows carriers of the FOXO3A-S T-allele with consistently higher insulin-stimulated peripheral glucose clearance rates, which may contribute to their longer and healthier lifespans.


Assuntos
Glucose , Longevidade , Animais , Humanos , Proteína Forkhead Box O3/genética , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Insulina/genética , Insulina/metabolismo , Longevidade/genética , Fosfatidilinositol 3-Quinases/genética , RNA Mensageiro
6.
Mol Metab ; 24: 30-43, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31079959

RESUMO

OBJECTIVE: Increasing the amounts of functionally competent brown adipose tissue (BAT) in adult humans has the potential to restore dysfunctional metabolism and counteract obesity. In this study, we aimed to characterize the human perirenal fat depot, and we hypothesized that there would be regional, within-depot differences in the adipose signature depending on local sympathetic activity. METHODS: We characterized fat specimens from four different perirenal regions of adult kidney donors, through a combination of qPCR mapping, immunohistochemical staining, RNA-sequencing, and pre-adipocyte isolation. Candidate gene signatures, separated by adipocyte morphology, were recapitulated in a murine model of unilocular brown fat induced by thermoneutrality and high fat diet. RESULTS: We identified widespread amounts of dormant brown adipose tissue throughout the perirenal depot, which was contrasted by multilocular BAT, primarily found near the adrenal gland. Dormant BAT was characterized by a unilocular morphology and a distinct gene expression profile, which partly overlapped with that of subcutaneous white adipose tissue (WAT). Brown fat precursor cells, which differentiated into functional brown adipocytes were present in the entire perirenal fat depot, regardless of state. We identified SPARC as a candidate adipokine contributing to a dormant BAT state, and CLSTN3 as a novel marker for multilocular BAT. CONCLUSIONS: We propose that perirenal adipose tissue in adult humans consists mainly of dormant BAT and provide a data set for future research on factors which can reactivate dormant BAT into active BAT, a potential strategy for combatting obesity and metabolic disease.


Assuntos
Adipócitos Marrons/citologia , Tecido Adiposo Marrom/citologia , Rim/citologia , Células-Tronco Mesenquimais/citologia , Adipócitos Marrons/metabolismo , Adulto , Idoso , Animais , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Células Cultivadas , Feminino , Humanos , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Células-Tronco Mesenquimais/metabolismo , Camundongos , Pessoa de Meia-Idade , Osteonectina/genética , Osteonectina/metabolismo
7.
Front Physiol ; 9: 883, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30050458

RESUMO

MicroRNAs (miRNAs) take part in regulating central cellular processes such as differentiation and metabolism. We have previously shown that muscle progenitor cells derived from individuals with type 2 diabetes (T2DM) have a dysregulated miRNA profile. We hypothesized that the T2DM muscle progenitor population is heterogeneous in its miRNA expression and differs from the progenitor population of healthy controls. MiRNA expression profiles of CD56+ muscle progenitor cells from people with T2DM and from healthy controls were therefore investigated at a single cell level. Single-cell analysis revealed three subpopulations expressing distinct miRNA profiles: two subpopulations including both T2DM and healthy control muscle precursors presented miRNA expression profiles mostly overlapping between groups. A distinct third subpopulation consisted solely of cells from donors with T2DM and showed enriched expression of miRNAs previously shown to be associated with type 2 diabetes. Among the enriched miRNAs was miR-29, a regulator of GLUT4 mRNA expression. Interestingly, this subpopulation also revealed several miRNAs with predicted targets in the PI3K/Akt pathway, not previously described in relation to T2DM muscle dysfunction. We concluded that a subpopulation of T2DM muscle precursor cells is severely dysregulated in terms of their miRNA expression, and accumulation of this population might thus contribute to the dysfunctional muscular phenotype in type 2 diabetes.

8.
PLoS One ; 12(10): e0187038, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29077742

RESUMO

BACKGROUND: Fetal exposure to maternal diabetes increases the risk of type 2 diabetes (T2DM), possibly mediated by epigenetic mechanisms. Low blood TXNIP DNA methylation has been associated with elevated glucose levels and risk of T2DM, and increased skeletal muscle TXNIP gene expression was reported in subjects with impaired glucose metabolism or T2DM. Subcutaneous adipose tissue (SAT) and skeletal muscle play a key role in the control of whole body glucose metabolism and insulin action. The extent to which TXNIP DNA methylation levels are decreased and/or gene expression levels increased in SAT or skeletal muscle of a developmentally programmed at-risk population is unknown. OBJECTIVE AND METHODS: The objective of this study was to investigate TXNIP DNA methylation and gene expression in SAT and skeletal muscle, and DNA methylation in blood, from adult offspring of women with gestational diabetes (O-GDM, n = 82) or type 1 diabetes (O-T1DM, n = 67) in pregnancy compared with offspring of women from the background population (O-BP, n = 57). RESULTS: SAT TXNIP DNA methylation was increased (p = 0.032) and gene expression decreased (p = 0.001) in O-GDM, but these differences were attenuated after adjustment for confounders. Neither blood/muscle TXNIP DNA methylation nor muscle gene expression differed between groups. CONCLUSION: We found no evidence of decreased TXNIP DNA methylation or increased gene expression in metabolic target tissues of offspring exposed to maternal diabetes. Further studies are needed to confirm and understand the paradoxical SAT TXNIP DNA methylation and gene expression changes in O-GDM subjects.


Assuntos
Proteínas de Transporte/genética , Metilação de DNA , Expressão Gênica , Gravidez em Diabéticas/genética , Adulto , Dinamarca , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Diabetes Gestacional/genética , Feminino , Humanos , Masculino , Músculo Esquelético/metabolismo , Gravidez
9.
Mol Metab ; 6(7): 770-779, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28702332

RESUMO

OBJECTIVE: MicroRNAs (miRNAs) are increasingly recognized as fine-tuning regulators of metabolism, and are dysregulated in several disease conditions. With their capacity to rapidly change gene expression, miRNAs are also important regulators of development and cell differentiation. In the current study, we describe an impaired myogenic capacity of muscle stem cells isolated from humans with type 2 diabetes (T2DM) and assess whether this phenotype is regulated by miRNAs. METHODS: We measured global miRNA expression during in vitro differentiation of muscle stem cells derived from T2DM patients and healthy controls. RESULTS: The mir-23b/27b cluster was downregulated in the cells of the patients, and a pro-myogenic effect of these miRNAs was mediated through the p53 pathway, which was concordantly dysregulated in the muscle cells derived from humans with T2DM. CONCLUSIONS: Our results indicate that we have identified a novel pathway for coordination of myogenesis, the miR-23b/27b-p53 axis that, when dysregulated, potentially contributes to a sustained muscular dysfunction in T2DM.


Assuntos
Diferenciação Celular , Diabetes Mellitus Tipo 2/metabolismo , MicroRNAs/genética , Mioblastos Esqueléticos/citologia , Proteína Supressora de Tumor p53/genética , Idoso , Células Cultivadas , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Regulação para Baixo , Feminino , Humanos , Masculino , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Desenvolvimento Muscular , Mioblastos Esqueléticos/metabolismo , Proteína Supressora de Tumor p53/metabolismo
10.
Clin Epigenetics ; 9: 37, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28413567

RESUMO

BACKGROUND: Offspring of women with diabetes in pregnancy are at increased risk of type 2 diabetes mellitus (T2DM), potentially mediated by epigenetic mechanisms. The adipokines leptin, adiponectin, and resistin (genes: LEP, ADIPOQ, RETN) play key roles in the pathophysiology of T2DM. We hypothesized that offspring exposed to maternal diabetes exhibit alterations in epigenetic regulation of subcutaneous adipose tissue (SAT) adipokine transcription. We studied adipokine plasma levels, SAT gene expression, and DNA methylation of LEP, ADIPOQ, and RETN in adult offspring of women with gestational diabetes (O-GDM, N = 82) or type 1 diabetes (O-T1DM, N = 67) in pregnancy, compared to offspring of women from the background population (O-BP, N = 57). RESULTS: Compared to O-BP, we found elevated plasma leptin and resistin levels in O-T1DM, decreased gene expression of all adipokines in O-GDM, decreased RETN expression in O-T1DM, and increased LEP and ADIPOQ methylation in O-GDM. In multivariate regression analysis, O-GDM remained associated with increased ADIPOQ methylation and decreased ADIPOQ and RETN gene expression and O-T1DM remained associated with decreased RETN expression after adjustment for potential confounders and mediators. CONCLUSIONS: In conclusion, offspring of women with diabetes in pregnancy exhibit increased ADIPOQ DNA methylation and decreased ADIPOQ and RETN gene expression in SAT. However, altered methylation and expression levels were not reflected in plasma protein levels, and the functional implications of these findings remain uncertain.


Assuntos
Adiponectina/genética , Metilação de DNA , Diabetes Mellitus Tipo 2/genética , Leptina/genética , Exposição Materna/efeitos adversos , Resistina/genética , Gordura Subcutânea/metabolismo , Adiponectina/sangue , Adiponectina/metabolismo , Filhos Adultos , Diabetes Mellitus Tipo 1/epidemiologia , Diabetes Gestacional/epidemiologia , Epigênese Genética , Feminino , Seguimentos , Regulação da Expressão Gênica , Predisposição Genética para Doença , Humanos , Leptina/sangue , Gravidez , Resistina/sangue
11.
Diabetes ; 65(10): 2900-10, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27388218

RESUMO

Prenatal exposure to maternal hyperglycemia is associated with an increased risk of later adverse metabolic health. Changes in the regulation of peroxisome proliferator-activated receptor-γ coactivator-1α (PPARGC1A) in skeletal muscle and subcutaneous adipose tissue (SAT) is suggested to play a role in the developmental programming of dysmetabolism based on studies of human subjects exposed to an abnormal intrauterine environment (e.g., individuals with a low birth weight). We studied 206 adult offspring of women with gestational diabetes mellitus (O-GDM) or type 1 diabetes (O-T1D) and of women from the background population (O-BP) using a clinical examination, oral glucose tolerance test, and gene expression and DNA methylation of PPARGC1A in skeletal muscle and SAT. Plasma glucose was significantly higher for both O-GDM and O-T1D compared with O-BP (P < 0.05). PPARGC1A gene expression in muscle was lower in O-GDM compared with O-BP (P = 0.0003), whereas no differences were found between O-T1D and O-BP in either tissue. PPARGC1A DNA methylation percentages in muscle and SAT were similar among all groups. Decreased PPARGC1A gene expression in muscle has previously been associated with abnormal insulin function and may thus contribute to the increased risk of metabolic disease in O-GDM. The unaltered PPARGC1A gene expression in muscle of O-T1D suggests that factors other than intrauterine hyperglycemia may contribute to the decreased PPARGC1A expression in O-GDM.


Assuntos
Tecido Adiposo/metabolismo , Metilação de DNA , Diabetes Gestacional/fisiopatologia , Expressão Gênica , Músculo Esquelético/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Adulto , Glicemia/metabolismo , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/fisiopatologia , Diabetes Gestacional/genética , Feminino , Teste de Tolerância a Glucose , Humanos , Pessoa de Meia-Idade , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Gravidez
12.
J Clin Endocrinol Metab ; 101(5): 2254-64, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27003303

RESUMO

CONTEXT/OBJECTIVE: Developmental programming of human muscle stem cells could in part explain why individuals born with low birth weight (LBW) have an increased risk of developing type 2 diabetes (T2D) later in life. We hypothesized that immature muscle stem cell functions including abnormal differentiation potential and metabolic function could link LBW with the risk of developing T2D. Design/Settings/Participants: We recruited 23 young men with LBW and 16 age-matched control subjects with normal birth weight. Biopsies were obtained from vastus lateralis, and muscle stem cells were isolated and cultured into fully differentiated myotubes. MAIN OUTCOME MEASURES: We studied glucose uptake, glucose transporters, insulin signaling, key transcriptional markers of myotube maturity, selected site-specific DNA methylation, and mitochondrial gene expression. RESULTS: We found reduced glucose uptake as well as decreased levels of glucose transporter-1 and -4 mRNA and of the Akt substrate of 160-kDa mRNA and protein in myotubes from LBW individuals compared with normal birth weight individuals. The myogenic differentiation markers, myogenin and myosin heavy chain 1 and 2, were decreased during late differentiation in LBW myotubes. Additionally, mRNA levels of the peroxisome proliferator-activated receptor-γ coactivator-1α and cytochrome c oxidase polypeptide 7A were reduced in LBW myotubes. Decreased gene expression was not explained by changes in DNA methylation levels. CONCLUSION: We demonstrate transcriptional and metabolic alterations in cultured primary satellite cells isolated from LBW individuals after several cell divisions, pointing toward a retained intrinsic defect conserved in these myotubes.


Assuntos
Fibras Musculares Esqueléticas/metabolismo , Miogenina/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Músculo Quadríceps/metabolismo , Adulto , Células Cultivadas , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 1/metabolismo , Humanos , Recém-Nascido de Baixo Peso , Masculino , Fibras Musculares Esqueléticas/citologia , Miogenina/genética , Cadeias Pesadas de Miosina/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Músculo Quadríceps/citologia , Células-Tronco , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA