Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Opt Express ; 19(27): 26768-82, 2011 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-22274260

RESUMO

Fluorometers are widely used in ecosystem observing to monitor fluorescence signals from organic compounds, as well as to infer geophysical parameters such as chlorophyll or CDOM concentration, but measurements are susceptible to variation caused by biofouling, instrument design, sensor drift, operating environment, and calibration rigor. To collect high quality data, such sensors need frequent checking and regular calibration. In this study, a wide variety of both liquid and solid fluorescent materials were trialed to assess their suitability as reference standards for performance assessment of in situ fluorometers. Criteria used to evaluate the standards included the spectral excitation/emission responses of the materials relative to fluorescence sensors and to targeted ocean properties, the linearity of the fluorometer's optical response with increasing concentration, stability and consistency, availability and ease of use, as well as cost. Findings are summarized as a series of recommended reference standards for sensors deployed on stationary and mobile platforms, to suit a variety of in situ coastal to ocean sensor configurations. Repeated determinations of chlorophyll scale factor using the recommended liquid standard, Fluorescein, achieved an accuracy of 2.5%. Repeated measurements with the recommended solid standard, Plexiglas Satinice® plum 4H01 DC (polymethylmethacrylate), over an 18 day period varied from the mean value by 1.0% for chlorophyll sensors and 3.3% for CDOM sensors.


Assuntos
Monitoramento Ambiental/instrumentação , Monitoramento Ambiental/normas , Espectrometria de Fluorescência/instrumentação , Espectrometria de Fluorescência/normas , Calibragem , Análise de Falha de Equipamento/normas , Oceanos e Mares , Padrões de Referência , Estados Unidos
2.
R Soc Open Sci ; 4(3): 160290, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28405350

RESUMO

Cetacean energy stores are known to vary according to life history, reproductive status and time of year; however, the opportunity to quantify these relationships is rare. Using a unique set of historical whaling records from Western Australia (1952-1963), we investigated energy stores of large cetaceans with differing life histories, and quantified the relationship between total body lipid and length for humpback whales (Megaptera novaeangliae) (n = 905) and sperm whales (Physeter macrocephalus) (n = 1961). We found that total body lipid increased with body length in both humpback and sperm whales, consistent with size-related energy stores. Male humpback whales stored 2.49 kl (15.6 barrels) (31.9-74.9%) more lipid than male sperm whales of equivalent length, to fuel their annual migration. Relative lipid stores of sperm whales (males) were constant throughout the year, while those of humpback whales varied with reproductive class and sampling date. Pregnant female humpback whales had higher relative energy stores than non-pregnant females and males (26.2% and 37.4%, respectively), to fuel the energy demands of gestation and lactation. Those that reached the sampling site later (en route to their breeding grounds) carried higher lipid stores than those that arrived earlier, possibly reflecting individual variation in residency times in the Antarctic feeding grounds. Importantly, longer pregnant females had relatively larger energy stores than the shorter pregnant females, indicating that the smaller individuals may experience higher levels of energetic stress during the migration fast. The relationships we developed between body lipid and length can be used to inform bioenergetics and ecosystem models when such detailed information is not available.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA