Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 110(40): 16265-70, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24043803

RESUMO

Identifying the major sources of risk in disease transmission is key to designing effective controls. However, understanding of transmission dynamics across species boundaries is typically poor, making the design and evaluation of controls particularly challenging for zoonotic pathogens. One such global pathogen is Escherichia coli O157, which causes a serious and sometimes fatal gastrointestinal illness. Cattle are the main reservoir for E. coli O157, and vaccines for cattle now exist. However, adoption of vaccines is being delayed by conflicting responsibilities of veterinary and public health agencies, economic drivers, and because clinical trials cannot easily test interventions across species boundaries, lack of information on the public health benefits. Here, we examine transmission risk across the cattle-human species boundary and show three key results. First, supershedding of the pathogen by cattle is associated with the genetic marker stx2. Second, by quantifying the link between shedding density in cattle and human risk, we show that only the relatively rare supershedding events contribute significantly to human risk. Third, we show that this finding has profound consequences for the public health benefits of the cattle vaccine. A naïve evaluation based on efficacy in cattle would suggest a 50% reduction in risk; however, because the vaccine targets the major source of human risk, we predict a reduction in human cases of nearly 85%. By accounting for nonlinearities in transmission across the human-animal interface, we show that adoption of these vaccines by the livestock industry could prevent substantial numbers of human E. coli O157 cases.


Assuntos
Vacinas Bacterianas/uso terapêutico , Doenças dos Bovinos/microbiologia , Doenças dos Bovinos/prevenção & controle , Infecções por Escherichia coli/veterinária , Escherichia coli O157/patogenicidade , Vacinação em Massa/veterinária , Zoonoses/prevenção & controle , Animais , Derrame de Bactérias/genética , Bovinos , Infecções por Escherichia coli/prevenção & controle , Infecções por Escherichia coli/transmissão , Fezes/microbiologia , Humanos , Modelos Imunológicos , Reação em Cadeia da Polimerase/veterinária , Saúde Pública , Medição de Risco , Escócia , Toxina Shiga II/genética , Toxina Shiga II/metabolismo , Zoonoses/microbiologia
2.
Emerg Infect Dis ; 18(3): 439-48, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22377426

RESUMO

Escherichia coli O26 and O157 have similar overall prevalences in cattle in Scotland, but in humans, Shiga toxin-producing E. coli O26 infections are fewer and clinically less severe than E. coli O157 infections. To investigate this discrepancy, we genotyped E. coli O26 isolates from cattle and humans in Scotland and continental Europe. The genetic background of some strains from Scotland was closely related to that of strains causing severe infections in Europe. Nonmetric multidimensional scaling found an association between hemolytic uremic syndrome (HUS) and multilocus sequence type 21 strains and confirmed the role of stx(2) in severe human disease. Although the prevalences of E. coli O26 and O157 on cattle farms in Scotland are equivalent, prevalence of more virulent strains is low, reducing human infection risk. However, new data on E. coli O26-associated HUS in humans highlight the need for surveillance of non-O157 enterohemorrhagic E. coli and for understanding stx(2) phage acquisition.


Assuntos
Infecções por Escherichia coli/microbiologia , Escherichia coli Shiga Toxigênica/patogenicidade , Animais , Bovinos , Doenças dos Bovinos/microbiologia , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/veterinária , Escherichia coli O157/genética , Escherichia coli O157/isolamento & purificação , Escherichia coli O157/patogenicidade , Humanos , Tipagem de Sequências Multilocus , Prevalência , Escócia/epidemiologia , Toxinas Shiga/genética , Escherichia coli Shiga Toxigênica/genética , Fatores de Virulência/genética
3.
Emerg Infect Dis ; 17(3): 524-7, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21392450

RESUMO

To determine the proportion of Escherichia coli O157 cases in Scotland attributable to secondary spread, we analyzed data obtained through entire-population enhanced surveillance. We identified 11% of cases as secondary. Secondary cases in single households were younger than secondary cases in outbreaks affecting >1 household and had similar risk for hemolytic uremic syndrome.


Assuntos
Diarreia/epidemiologia , Surtos de Doenças/estatística & dados numéricos , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/transmissão , Escherichia coli O157 , Síndrome Hemolítico-Urêmica/epidemiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Diarreia/microbiologia , Infecções por Escherichia coli/microbiologia , Feminino , Síndrome Hemolítico-Urêmica/microbiologia , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Escócia/epidemiologia , Adulto Jovem
4.
J Med Microbiol ; 56(Pt 8): 1066-1075, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17644714

RESUMO

A 12 month survey of candidaemia in Scotland, UK, in which every Scottish hospital laboratory submitted all blood isolates of yeasts for identification, strain typing and susceptibility testing, provided 300 isolates from 242 patients, generating incidence data of 4.8 cases per 100,000 population per year and 5.9 cases per 100,000 acute occupied bed days; 27.9 % of cases occurred in intensive care units. More than half the patients with candidaemia had an underlying disease involving the abdomen, 78 % had an indwelling intravenous catheter, 62 % had suffered a bacterial infection within the 2 weeks prior to candidaemia and 37 % had undergone a laparotomy. Candida albicans was the infecting species in 50 % of cases, followed by Candida glabrata (21 %) and Candida parapsilosis (12 %). Seven cases of candidaemia were caused by Candida dubliniensis, which was more prevalent even than Candida lusitaniae and Candida tropicalis (six cases each). Among C. glabrata isolates, 55 % showed reduced susceptibility to fluconazole, but azole resistance among other species was extremely low. Multilocus sequence typing showed isolates with high similarity came from different hospitals across the country, and many different types came from the hospitals that submitted the most isolates, indicating no tendency towards hospital-specific endemic strains. Multiple isolates of C. albicans and C. glabrata from individual patients were of the same strain type with single exceptions for each species. The high prevalence of candidaemia in Scotland, relative to other population-based European studies, and the high level of reduced fluconazole susceptibility of Scottish C. glabrata isolates warrant continued future surveillance of invasive Candida infections.


Assuntos
Candida , Candidíase/epidemiologia , Fungemia/epidemiologia , Adolescente , Adulto , Idoso , Antifúngicos/farmacologia , Infecções Bacterianas , Candida/classificação , Candida/efeitos dos fármacos , Candida/genética , Cateteres de Demora , Criança , Pré-Escolar , Feminino , Fluconazol/farmacologia , Inquéritos Epidemiológicos , Humanos , Incidência , Lactente , Laparotomia , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Técnicas de Tipagem Micológica , Estudos Prospectivos , Fatores de Risco , Escócia/epidemiologia
5.
Front Microbiol ; 7: 915, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27379047

RESUMO

This study provide an up-to-date overview of the epidemiology and risk factors for Candida bloodstream infection in Scotland in 2012/2013, and the antifungal susceptibility of isolates from blood cultures from 11 National Health Service boards within Scotland. Candida isolates were identified by chromogenic agar and confirmed by MALDI-TOF methods. Survival and associated risk factors for patients stratified as albicans and non-albicans cases were assessed. Information on the spectrum of antifungals used was collected and summarized. The isolates sensitivity to different antifungals was tested by broth microdilution method and interpreted according to CLSI/EUCAST guidelines. Forty one percent of candidaemia cases were associated with Candida albicans, followed by C. glabrata (35%), C. parapsilosis (11.5%), and remainder with other Candida spp. C. albicans and C. glabrata infections were associated with 20.9 and 16.3% mortality, respectively. Survival of patients with C. albicans was significantly lower compared to non-C. albicans and catheter line removal in C. albicans patients significantly increases the survival days. Predisposing factors such as total parenteral nutrition, and number of days on mechanical ventilation or in intensive care, were significantly associated with C. albicans infections. Fluconazole was used extensively (64.5%) for treating candidaemia cases followed by echinocandins (33.8%). Based on CLSI breakpoints, MIC test found no resistance to any antifungals tested except 5.26% fluconazole resistance among C. glabrata isolates. Moreover, by comparing to EUCAST breakpoints we found 3.95% of C. glabrata isolates were resistant to anidulafungin. We have observed a shift in Candida spp. with an increasing isolation of C. glabrata. Delay and choice of antifungal treatment are associated with poor clinical outcomes.

6.
J Infect ; 72(2): 161-70, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26632328

RESUMO

OBJECTIVES: Urinary antigen testing for Legionella pneumophila serogroup 1 is the leading rapid diagnostic test for Legionnaires' Disease (LD); however other Legionella species and serogroups can also cause LD. The aim was to determine the utility of front-line L. pneumophila and Legionella species PCR in a severe respiratory infection algorithm. METHODS: L. pneumophila and Legionella species duplex real-time PCR was carried out on 1944 specimens from hospitalised patients over a 4 year period in Edinburgh, UK. RESULTS: L. pneumophila was detected by PCR in 49 (2.7%) specimens from 36 patients. During a LD outbreak, combined L. pneumophila respiratory PCR and urinary antigen testing had optimal sensitivity and specificity (92.6% and 98.3% respectively) for the detection of confirmed cases. Legionella species was detected by PCR in 16 (0.9%) specimens from 10 patients. The 5 confirmed and 1 probable cases of Legionella longbeachae LD were both PCR and antibody positive. CONCLUSIONS: Front-line L. pneumophila and Legionella species PCR is a valuable addition to urinary antigen testing as part of a well-defined algorithm. Cases of LD due to L. longbeachae might be considered laboratory-confirmed when there is a positive Legionella species PCR result and detection of L. longbeachae specific antibody response.


Assuntos
Testes Diagnósticos de Rotina/métodos , Legionelose/diagnóstico , Programas de Rastreamento/métodos , Técnicas de Diagnóstico Molecular/métodos , Reação em Cadeia da Polimerase/métodos , Adulto , Idoso , Algoritmos , Feminino , Humanos , Legionella longbeachae/genética , Legionella longbeachae/imunologia , Legionella pneumophila/genética , Legionella pneumophila/imunologia , Masculino , Pessoa de Meia-Idade , Reino Unido
7.
Sci Rep ; 5: 14145, 2015 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-26442781

RESUMO

Genetic variation in an infectious disease pathogen can be driven by ecological niche dissimilarities arising from different host species and different geographical locations. Whole genome sequencing was used to compare E. coli O157 isolates from host reservoirs (cattle and sheep) from Scotland and to compare genetic variation of isolates (human, animal, environmental/food) obtained from Scotland, New Zealand, Netherlands, Canada and the USA. Nei's genetic distance calculated from core genome single nucleotide polymorphisms (SNPs) demonstrated that the animal isolates were from the same population. Investigation of the Shiga toxin bacteriophage and their insertion sites (SBI typing) revealed that cattle and sheep isolates had statistically indistinguishable rarefaction profiles, diversity and genotypes. In contrast, isolates from different countries exhibited significant differences in Nei's genetic distance and SBI typing. Hence, after successful international transmission, which has occurred on multiple occasions, local genetic variation occurs, resulting in a global patchwork of continental and trans-continental phylogeographic clades. These findings are important for three reasons: first, understanding transmission and evolution of infectious diseases associated with multiple host reservoirs and multi-geographic locations; second, highlighting the relevance of the sheep reservoir when considering farm based interventions; and third, improving our understanding of why human disease incidence varies across the world.


Assuntos
Bacteriófagos/genética , Infecções por Escherichia coli/genética , Escherichia coli O157/isolamento & purificação , Genoma , Interações Hospedeiro-Patógeno/genética , Filogeografia , Polimorfismo de Nucleotídeo Único/genética , Animais , Bovinos , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Escherichia coli O157/genética , Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Nova Zelândia/epidemiologia , Ovinos
8.
Genome Biol ; 15(11): 504, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25370747

RESUMO

BACKGROUND: Legionnaires' disease is a severe form of pneumonia caused by the environmental bacterium Legionella pneumophila. Outbreaks commonly affect people with known risk factors, but the genetic and pathogenic complexity of L. pneumophila within an outbreak is not well understood. Here, we investigate the etiology of the major Legionnaires' disease outbreak that occurred in Edinburgh, UK, in 2012, by examining the evolutionary history, genome content, and virulence of L. pneumophila clinical isolates. RESULTS: Our high resolution genomic approach reveals that the outbreak was caused by multiple genetic subtypes of L. pneumophila, the majority of which had diversified from a single progenitor through mutation, recombination, and horizontal gene transfer within an environmental reservoir prior to release. In addition, we discover that some patients were infected with multiple L. pneumophila subtypes, a finding which can affect the certainty of source attribution. Importantly, variation in the complement of type IV secretion systems encoded by different genetic subtypes correlates with virulence in a Galleria mellonella model of infection, revealing variation in pathogenic potential among the outbreak source population of L. pneumophila. CONCLUSIONS: Taken together, our study indicates previously cryptic levels of pathogen heterogeneity within a Legionnaires' disease outbreak, a discovery that impacts on source attribution for future outbreak investigations. Furthermore, our data suggest that in addition to host immune status, pathogen diversity may be an important influence on the clinical outcome of individual outbreak infections.


Assuntos
Fluxo Gênico , Legionella pneumophila/genética , Doença dos Legionários/genética , Surtos de Doenças , Genoma Bacteriano , Sequenciamento de Nucleotídeos em Larga Escala , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Legionella pneumophila/imunologia , Legionella pneumophila/patogenicidade , Doença dos Legionários/imunologia , Doença dos Legionários/microbiologia , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA