Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Prostate ; 77(7): 708-717, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28168722

RESUMO

BACKGROUND: Complications after a thulium laser resection of the prostate (TmLRP) are related to re-epithelialization of the prostatic urethra. Since prostate growth and development are induced by androgen, the aim of this study was to determine the role and explore the mechanism of androgen in wound healing of the prostatic urethra. METHODS: Beagles that received TmLRPs were randomly distributed into a castration group, a testosterone undecanoate (TU) group, and a control group. The prostate wound was assessed once a week using a cystoscope. Histological analysis was then carried out to study the re-epithelialization of the prostatic urethra in each group. The inflammatory response in the wound tissue and urine was also investigated. RESULTS: The healing of the prostatic urethra after a TmLRP was more rapid in the castration group and slower in the TU group than that in the control group. Castration accelerated re-epithelialization by promoting basal cell proliferation in the wound surface and beneath the wound and by accelerating the differentiation of basal cells into urothelial cells. Castration reduced the duration of the inflammatory phase and induced the conversion of M1 macrophages to M2 macrophages, thus accelerating the maturation of the wound. By contrast, androgen supplementation enhanced the inflammatory response and prolonged the inflammatory phase. Moreover, the anti-inflammatory phase was delayed and weakened. CONCLUSION: Androgen deprivation promotes re-epithelialization of the wound, regulates the inflammatory response, and accelerates wound healing of the prostatic urethra after a TmLRP. Prostate 77:708-717, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Androgênios , Complicações Intraoperatórias , Próstata , Testosterona/análogos & derivados , Ressecção Transuretral da Próstata/efeitos adversos , Uretra , Androgênios/administração & dosagem , Androgênios/efeitos adversos , Androgênios/metabolismo , Animais , Modelos Animais de Doenças , Cães , Complicações Intraoperatórias/metabolismo , Complicações Intraoperatórias/fisiopatologia , Complicações Intraoperatórias/terapia , Macrófagos/patologia , Macrófagos/fisiologia , Masculino , Próstata/patologia , Próstata/cirurgia , Reepitelização/efeitos dos fármacos , Reepitelização/fisiologia , Estatística como Assunto , Testosterona/administração & dosagem , Testosterona/efeitos adversos , Testosterona/metabolismo , Túlio/farmacologia , Ressecção Transuretral da Próstata/métodos , Uretra/lesões , Uretra/patologia , Cicatrização/efeitos dos fármacos , Cicatrização/fisiologia
2.
Asian J Androl ; 18(4): 639-43, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26732103

RESUMO

Often, pathological Gleason Score (GS) and stage of prostate cancer (PCa) were inconsistent with biopsy GS and clinical stage. However, there were no widely accepted methods predicting upgrading and upstaging PCa. In our study, we investigated the association between serum testosterone and upgrading or upstaging of PCa after radical prostatectomy (RP). We enrolled 167 patients with PCa with biopsy GS ≤6, clinical stage ≤T2c, and prostate-specific antigen (PSA) <10 ng ml-1 from April 2009 to April 2015. Data including age, body mass index, preoperative PSA level, comorbidity, clinical presentation, and preoperative serum total testosterone level were collected. Upgrading occurred in 62 (37.1%) patients, and upstaging occurred in 73 (43.7%) patients. Preoperative testosterone was lower in the upgrading than nonupgrading group (3.72 vs 4.56, P< 0.01). Patients in the upstaging group had lower preoperative testosterone than those in the nonupstaging group (3.84 vs 4.57, P= 0.01). In multivariate logistic regression analysis, as both continuous and categorical variables, low serum testosterone was confirmed to be an independent predictor of pathological upgrading (P = 0.01 and P= 0.01) and upstaging (P = 0.01 and P = 0.02) after RP. We suggest that low serum testosterone (<3 ng ml-1 ) is associated with a high rate of upgrading and upstaging after RP. It is better for surgeons to ensure close monitoring of PSA levels and imaging examination when selecting non-RP treatment, to be cautious in proceeding with nerve-sparing surgery, and to be enthusiastic in performing extended lymph node dissection when selecting RP treatment for patients with low serum testosterone.


Assuntos
Próstata/patologia , Prostatectomia/métodos , Neoplasias da Próstata/patologia , Testosterona/sangue , Idoso , Humanos , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Estadiamento de Neoplasias , Prognóstico , Próstata/cirurgia , Antígeno Prostático Específico/sangue , Neoplasias da Próstata/sangue , Neoplasias da Próstata/cirurgia , Estudos Retrospectivos
3.
Oncotarget ; 7(18): 26247-58, 2016 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-27028859

RESUMO

Mechanisms of stromal-epithelial crosstalk are essential for Prostate cancer (PCa) tumorigenesis and progression. Peripheral zone of the prostate gland possesses a stronger inclination for PCa than transition zone. We previously found a variety of genes that differently expressed among different prostate stromal cells, including LIM domain only 2 (LMO2) which highly expressed in peripheral zone derived stromal cells (PZSCs) and PCa associated fibroblasts (CAFs) compared to transition zone derived stromal cells (TZSCs). Studies on its role in tumors have highlighted LMO2 as an oncogene. Herein, we aim to study the potential mechanisms of stromal LMO2 in promoting PCa progression. The in vitro cells co-culture and in vivo cells recombination revealed that LMO2 over-expressed prostate stromal cells could promote the proliferation and invasiveness of either prostate epithelial or cancer cells. Further protein array screening confirmed that stromal LMO2 stimulated the secretion of Interleukin-11 (IL-11), which could promote proliferation and invasiveness of PCa cells via IL-11 receptor α (IL11Rα) - STAT3 signaling. Moreover, stromal LMO2 over-expression could suppress miR-204-5p which was proven to be a negative regulator of IL-11 expression. Taken together, results of our study demonstrate that prostate stromal LMO2 is capable of stimulating IL-11 secretion and by which activates IL11Rα - STAT3 signaling in PCa cells and then facilitates PCa progression. These results may make stromal LMO2 responsible for zonal characteristic of PCa and as a target for PCa microenvironment-targeted therapy.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/biossíntese , Interleucina-11/biossíntese , Proteínas com Domínio LIM/biossíntese , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas/biossíntese , Células Estromais/metabolismo , Animais , Progressão da Doença , Xenoenxertos , Humanos , Masculino , Camundongos , Comunicação Parácrina/fisiologia , Neoplasias da Próstata/metabolismo , Células Estromais/patologia , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA