Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Small ; 18(1): e2105530, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34825482

RESUMO

Parenteral vaccines typically can prime systemic humoral immune response, but with limited effects on cellular and mucosal immunity. Here, a subcutis-to-intestine cascade for navigating nanovaccines to address this limitation is proposed. This five-step cascade includes lymph nodes targeting, uptaken by dendritic cells (DCs), cross-presentation of antigens, increasing CCR9 expression on DCs, and driving CD103+ DCs to mesenteric lymph nodes, in short, the LUCID cascade. Specifically, mesoporous silica nanoparticles are encapsulated with antigen and adjuvant toll-like receptor 9 agonist cytosine-phosphate-guanine oligodeoxynucleotides, and further coated by a lipid bilayer containing all-trans retinoic acid. The fabricated nanovaccines efficiently process the LUCID cascade to dramatically augment cellular and mucosal immune responses. Importantly, after being vaccinated with Salmonella enterica serovar Typhimurium antigen-loaded nanovaccine, the mice generate protective immunity against challenge of S. Typhimurium. These findings reveal the efficacy of nanovaccines mediated subcutis-to-intestine cascade in simultaneously activating cellular and mucosal immune responses against mucosal infections.


Assuntos
Nanopartículas , Vacinas , Animais , Antígenos , Células Dendríticas , Intestinos , Camundongos , Dióxido de Silício
2.
Nano Lett ; 21(6): 2551-2561, 2021 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-33687217

RESUMO

Inducing immune tolerance through repeated administration of self-antigens is a promising strategy for treating rheumatoid arthritis (RA), and current research indicates that coadministration of immunomodulators can further orchestrate the tolerogenic response. However, most of the clinical trials based on tolerance induction have negligible therapeutic effects. Peripheral lymphoid organs play critical roles in immunotherapy. Here, we design an engineered nanoemulsion for targeted codelivery of self-antigens and an immunomodulator to ectopic lymphoid structures (ELSs) in inflamed joints of RA. Namely, a citrullinated multiepitope self-antigen (CitP) and rapamycin are incorporated into the nanoemulsions (NEs@CitP/Rapa), which are fabricated by a facial method using commercialized pharmaceutical excipients. After intravenous administration, the nanoemulsion shows satisfactory accumulation in the inflamed paws and provides enhanced anti-inflammatory effect in various experimental murine models of RA. Our study provides a promising targeting strategy to induce immune tolerance for the treatment of RA.


Assuntos
Artrite Reumatoide , Autoanticorpos , Animais , Artrite Reumatoide/tratamento farmacológico , Tolerância Imunológica , Camundongos
3.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 52(4): 592-597, 2021 Jul.
Artigo em Zh | MEDLINE | ID: mdl-34323036

RESUMO

OBJECTIVE: To prepare a chitosan-modified cationic nanoemulsion that could be used to prolong the residence time of nasal vaccines in the nasal cavity and improve the cellular uptake efficiency so as to enhance the immune efficacy of nasal vaccines. METHODS: A nanoemulsion-based vaccine coated with chitosan was prepared, and the particle size, potential, antigen encapsulation efficiency, stability as well as cytotoxicity were examined. The uptake efficiency of vaccine on different cells and the residence time of vaccine in the nasal cavity were measured. Finally, nasal vaccine was administered on mice and the antibody levels in the serum and in the nasal lavage fluids of the immunized mice were examined. RESULTS: The nanoemulsion-based vaccine had an average particle size of (167.2±0.75) nm, a polydispersity index (PDI) of 0.21±0.01, and an average potential of (13.7±0.85) mV. The encapsulation efficiency of antigen was 92.7%. The nanoemulsion-based vaccine had good stability and did not show obvious cytotoxicity in Madin-Darby canine kidney (MDCK) epithelial cells. The vaccine demonstrated relatively high cellular uptake of antigens on DC2.4 and MDCK cells at (49.7±3.45)% and (59.7±2.19)%, respectively. Besides, the cationic nanoemulsion also significantly increased the residence time of the antigen, and a considerable amount of nanoemulsion-based vaccine was found remaining in the nasal cavity 60 minutes after administration. Compared with free antigen and the nanoemulsion without chitosan modification, the chitosan-modified nanoemulsion vaccine induced higher systemic and mucosal antibody levels in mice after nasal immunization ( P<0.01). CONCLUSION: The chitosan-modified nanoemulsion vaccine prepared in the study can enhance the immune efficacy of nasal vaccines, showing great potential to be used as a delivery carrier for nasal vaccines.


Assuntos
Quitosana , Nanopartículas , Vacinas , Administração Intranasal , Animais , Cães , Sistemas de Liberação de Medicamentos , Camundongos
4.
J Med Virol ; 91(11): 1918-1929, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31317548

RESUMO

Influenza A (H1N1) is a rapidly spreading acute respiratory illness that remains a worldwide burden on public health. To simulate natural infection routes, BALB/C mice were challenged with the H1N1 virus by aerosol and intranasal instillation routes. We compared the weight change and survival of the mice for 14 consecutive days after infection. The infected mice were euthanized at days 3, 5, 7, and 9 to perform necropsies, lung pathological analyses, viral titers measurement, and lung cytokines examination. The aerosol-treated mice showed clinical symptoms on day 4, obvious lung lesions on day 5, rapid weight loss on day 7, peak virus replication in the lungs on days 7 to 9, and bronchial epithelial hyperplasia on day 9. However, after intranasal instillation, the mice exhibited clinical signs on day 2, rapid weight loss and obvious lung lesions on day 3, and peak virus replication in the lungs on days 3 to 5; no bronchial epithelial hyperplasia was detected. High levels of proinflammatory cytokines and chemokines were detected in the lungs of infected mice by both two routes. Disease and lung lesion progressions were slower in the mice that inhaled H1N1-containing aerosols than in those treated by intranasal instillation, and lung lesions were homogeneous in the aerosol group and heterogeneous in the intranasal group. In this study, BALB/C mouse models of H1N1 virus aerosol inhalation were successfully established and compared with mouse models of intranasal inoculation, aerosol mouse models had an infection route and lung pathology characteristics that more closely resembled those observed in humans.


Assuntos
Modelos Animais de Doenças , Pulmão/imunologia , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/virologia , Administração por Inalação , Administração Intranasal , Aerossóis , Animais , Citocinas/imunologia , Feminino , Vírus da Influenza A Subtipo H1N1 , Pulmão/patologia , Pulmão/virologia , Camundongos , Organismos Livres de Patógenos Específicos , Replicação Viral
5.
Mol Biol Rep ; 41(2): 901-7, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24385297

RESUMO

MicroRNAs (miRNAs) are 20-24 nucleotide long non-coding RNAs that play critical regulatory roles during plant development, organ morphogenesis, and cell fate determination and differentiation. In this study, miRNA microarray chips were used to explore the expression profile of ramie miRNAs between the bast of fiber elongation phase and those of cell wall thickening and end wall dissolving phase. There are 150 and 148 credible miRNAs in the bast of fiber elongation phase and cell wall thickening and end wall dissolving phase, respectively. These miRNAs distributed in 27 species and mainly concentrated in nine species. Analysis showed that 51 miRNAs were differentially expressed: 27 up-regulated (miR166, miR172, miR396, miR482, miR894 and miR2911 families) and 24 down-regulated (miR156, miR159, miR164, miR319 and miR1450 families) in the bast of fiber elongation phase compared with the bast of cell wall thickening and end wall dissolving phase. To further confirm our results, we examined the expression of three miRNAs (zma-miR172b*, pvu-miR482 and vvi-172a) by quantitative real-time reverse transcriptase-PCR. Our results will provide a molecular basis for future research miRNA function on ramie genetics and breeding.


Assuntos
Boehmeria/genética , MicroRNAs/biossíntese , RNA de Plantas/genética , Estresse Fisiológico , Boehmeria/crescimento & desenvolvimento , Parede Celular/genética , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , Análise de Sequência com Séries de Oligonucleotídeos , RNA de Plantas/biossíntese , Transcriptoma
6.
Acta Biomater ; 177: 316-331, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38244661

RESUMO

Parkinson's disease (PD) is the second most common neurodegenerative disorder characterized by the accumulation of α-synuclein (α-syn) aggregates called Lewy bodies leading to the gradual loss of dopaminergic (DA) neurons in the substantia nigra. Although α-syn expression can be attenuated by antisense oligonucleotides (ASOs) and heteroduplex oligonucleotide (HDO) by intracerebroventricular (ICV) injection, the challenge to peripheral targeted delivery of oligonucleotide safely and effectively into DA neurons remains unresolved. Here, we designed a new DNA/DNA double-stranded (complementary DNA, coDNA) molecule with cholesterol conjugation (Chol-HDO (coDNA)) based on an α-syn-ASO sequence and evaluated its silence efficiency. Further, Chol-HDO@LMNPs, Chol-HDO-loaded, cerebrovascular endothelial cell membrane with DSPE-PEG2000-levodopa modification (L-DOPA-CECm)-coated nanoparticles (NPs), were developed for the targeted treatment of PD by tail intravenous injection. CECm facilitated the blood-brain barrier (BBB) penetration of NPs, together with cholesterol escaped from reticuloendothelial system uptake, as well as L-DOPA was decarboxylated into dopamine which promoted the NPs toward the PD site for DA neuron regeneration. The behavioral tests demonstrated that the nanodecoys improved the efficacy of HDO on PD mice. These findings provide insights into the development of biomimetic nanodecoys loading HDO for precise therapy of PD. STATEMENT OF SIGNIFICANCE: The accumulation of α-synuclein (α-syn) aggregates is a hallmark of PD. Our previous study designed a specific antisense oligonucleotide (ASO) targeting human SNCA, but the traumatic intracerebroventricular (ICV) is not conducive to clinical application. Here, we further optimize the ASO by creating a DNA/DNA double-stranded molecule with cholesterol-conjugated, named Chol-HDO (coDNA), and develop a DA-targeted biomimetic nanodecoy Chol-HDO@LMNPs by engineering cerebrovascular endothelial cells membranes (CECm) with DSPE-PEG2000 and L-DOPA. The in vivo results demonstrated that tail vein injection of Chol-HDO@LMNPs could target DA neurons in the brain and ameliorate motor deficits in a PD mouse model. This investigation provides a promising peripheral delivery platform of L-DOPA-CECm nanodecoy loaded with a new Chol-HDO (coDNA) targeting DA neurons in PD therapy.


Assuntos
Doença de Parkinson , Camundongos , Humanos , Animais , Doença de Parkinson/genética , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Neurônios Dopaminérgicos/metabolismo , Levodopa , Oligonucleotídeos/farmacologia , Oligonucleotídeos/genética , Oligonucleotídeos/metabolismo , Biomimética , Células Endoteliais/metabolismo , DNA/metabolismo
7.
Small Methods ; : e2301620, 2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38343178

RESUMO

Acute inflammation has the potential for the recruitment of immune cells, inhibiting tumor angiogenesis, metastasis, and drug resistance thereby overcoming the tumor immunosuppressive microenvironment caused by chronic inflammation. Here, an acute inflammation inducer using bacteria outer membrane vesicles (OMVs) loaded in thermal-sensitive hydrogel (named OMVs-gel) for localized and controlled release of OMVs in tumor sites is proposed. OMVs trigger neutrophil recruitment and amplify acute inflammation inside tumor tissues. The hydrogel ensures drastic inflammation is confined within the tumor, addressing biosafety concerns that the direct administration of free OMVs may cause fatal effects. This strategy eradicated solid tumors safely and rapidly. The study further elucidates one of the possible immune mechanisms of OMVs-gel therapy, which involves the assembly of antitumor neutrophils and elastase release for selective tumor killing. Additionally, tumor vascular destruction induced by OMVs-gel results in tumor darkening, allowing for combinational photothermal therapy. The findings suggest that the use of OMVs-gel can safely induce acute inflammation and enhance antitumor immunity, representing a promising strategy to promote acute inflammation application in tumor immunotherapy.

8.
Front Immunol ; 14: 1140463, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37600773

RESUMO

Immunotherapy has been emerging as a powerful strategy for cancer management. Recently, accumulating evidence has demonstrated that bacteria-based immunotherapy including naive bacteria, bacterial components, and bacterial derivatives, can modulate immune response via various cellular and molecular pathways. The key mechanisms of bacterial antitumor immunity include inducing immune cells to kill tumor cells directly or reverse the immunosuppressive microenvironment. Currently, bacterial antigens synthesized as vaccine candidates by bioengineering technology are novel antitumor immunotherapy. Especially the combination therapy of bacterial vaccine with conventional therapies may further achieve enhanced therapeutic benefits against cancers. However, the clinical translation of bacteria-based immunotherapy is limited for biosafety concerns and non-uniform production standards. In this review, we aim to summarize immunotherapy strategies based on advanced bacterial therapeutics and discuss their potential for cancer management, we will also propose approaches for optimizing bacteria-based immunotherapy for facilitating clinical translation.


Assuntos
Imunoterapia , Neoplasias , Humanos , Bactérias , Neoplasias/terapia , Antígenos de Bactérias , Vacinas Bacterianas , Microambiente Tumoral
9.
Nat Biomed Eng ; 7(1): 8-23, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36424464

RESUMO

The cell-surface glycoprotein CD98-a subunit of the LAT1/CD98 amino acid transporter-is an attractive target for cancer immunotherapies, but its widespread expression has hampered the development of CD98-targeting antibody therapeutics. Here we report that an anti-CD98 antibody, identified via the screening of phage-display libraries of CD98 single-chain variable fragments with mutated complementarity-determining regions, preserves the physiological function of CD98 and elicits broad-spectrum crystallizable-fragment (Fc)-mediated anti-tumour activity (requiring Fcγ receptors for immunoglobulins, macrophages, dendritic cells and CD8+ T cells, as well as other components of the innate and adaptive immune systems) in multiple xenograft and syngeneic tumour models established in CD98-humanized mice. We also show that a variant of the anti-CD98 antibody with pH-dependent binding, generated by solving the structure of the antibody-CD98 complex, displayed enhanced tumour-specific activity and pharmacokinetics. pH-dependent antibody variants targeting widely expressed antigens may lead to superior therapeutic outcomes.


Assuntos
Neoplasias , Anticorpos de Cadeia Única , Animais , Humanos , Camundongos , Linfócitos T CD8-Positivos , Concentração de Íons de Hidrogênio , Proteína-1 Reguladora de Fusão/imunologia
10.
Plant Physiol Biochem ; 203: 108050, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37812991

RESUMO

Caucasian clover (Trifolium ambiguum) is a perennial rooted and tillering leguminous forage with strong adaptability, outstanding stress tolerance and other preferable traits. However, the specificity with rhizobia limits the extended application of Caucasian clover. Therefore, it is important to study the changes of genes and metabolites in the early process of nodulation in Caucasian clover to improve its nodulation and nitrogen fixation ability. In this study, we used Caucasian clover as the experimental material to investigate its nodulation mechanism using transcriptomic and metabolomic approaches, such that to break the nitrogen fixation barrier for the promotion of Caucasian clover. Metabolomic and transcriptomic profiling revealed that both DAMs and DEGs were significantly enriched in the phenylpropanoid and flavonoid biosynthetic pathways, with DEGs showing up-regulation at 3 days and 6 days post inoculation (dpi) with rhizobia, and some DEGs showing down-regulation at 9 dpi. Accumulation of flavonoids was significantly increased at both 3 dpi and 6 dpi, and some compounds were significantly decreased at 9 dpi. A total of 35 DEGs were involved in flavonoid synthesis by WGCNA analysis, among which HCT, CCR, COMT and F3H played an important role. This study provides insights in understanding the molecular mechanism of nodulation and nitrogen fixation in Caucasian clover.


Assuntos
Rhizobium , Trifolium , Trifolium/genética , Flavonoides , Transcriptoma , Fenótipo , Fixação de Nitrogênio/genética
11.
Front Pharmacol ; 13: 846715, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35250598

RESUMO

Cancer has posed a major threat to human life and health with a rapidly increasing number of patients. The complexity and refractory of tumors have brought great challenges to tumor treatment. In recent years, nanomaterials and nanotechnology have attracted more attention and greatly improved the efficiency of tumor therapies and significantly prolonged the survival period, whether for traditional tumor treatment methods such as radiotherapy, or emerging methods, such as phototherapy and immunotherapy, sonodynamic therapy, chemodynamic therapy and RNA interference therapeutics. Various monotherapies have obtained positive results, while combination therapies are further proposed to prevent incomplete eradication and recurrence of tumors, strengthen tumor killing efficacy with minimal side effects. In view of the complementary promotion effects between different therapies, it is vital to utilize nanomaterials as the link between monotherapies to achieve synergistic performance. Further development of nanomaterials with efficient tumor-killing effect and better biosafety is more in line with the needs of clinical treatment. In a word, the development of nanomaterials provides a promising way for tumor treatment, and here we will review the emerging nanomaterials towards radiotherapy, phototherapy and immunotherapy, and summarized the developed nanocarriers applied for the tumor combination therapies in the past 5 years, besides, the advances of some other novel therapies such as sonodynamic therapy, chemodynamic therapy, and RNA interference therapeutics have also been mentioned.

12.
Biomater Res ; 26(1): 49, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36180936

RESUMO

Antisense oligonucleotides (ASOs) are an important tool for the treatment of many genetic disorders. However, similar to other gene drugs, vectors are often required to protect them from degradation and clearance, and to accomplish their transport in vivo. Compared with viral vectors, artificial nonviral nanoparticles have a variety of design, synthesis, and formulation possibilities that can be selected to accomplish protection and delivery for specific applications, and they have served critical therapeutic purposes in animal model research and clinical applications, allowing safe and efficient gene delivery processes into the target cells. We believe that as new ASO drugs develop, the exploration for corresponding nonviral vectors is inevitable. Intensive development of nonviral vectors with improved delivery strategies based on specific targets can continue to expand the value of ASO therapeutic approaches. Here, we provide an overview of current nonviral delivery strategies, including ASOs modifications, action mechanisms, and multi-carrier methods, which aim to address the irreplaceable role of nonviral vectors in the progressive development of ASOs delivery.

13.
J Control Release ; 349: 699-711, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35907590

RESUMO

As two of the most widely used adjuvants, aluminum hydroxide and the oil-in-water emulsion MF59 have their intrinsic limitations: classical aluminum gel induces only weak cellular immune responses while MF59 cannot be used as an antigen delivery system due to its poor physical interaction with antigen molecules. Herein, we combined these two adjuvants and constructed a novel nano-vaccine delivery system by inserting aluminum hydroxide into the surface of a modified MF59 nano-emulsion (AlNEs). A model antigen ovalbumin (OVA) and an immune potentiator CpG were adsorbed on the surface of AlNEs (hereinafter AlNEs-OVA-CpG) through a facile mixing step. After subcutaneous injection, AlNEs-OVA-CpG effectively drained to lymph nodes, delivered both cargos into lymph node-resident antigen presenting cells (APCs), and escaped from lysosomes into the cytoplasm, resulting in enhanced antigen cross-presentation. Finally, AlNEs-OVA-CpG induced potent antigen-specific humoral and cellular immune responses, which significantly inhibited tumor growth and prolonged mice survival in a EG7-OVA tumor model. In sum, our results suggested that AlNEs have a great prospect to induce CD8+ T cell responses for subunit antigens.


Assuntos
Hidróxido de Alumínio , Neoplasias , Adjuvantes Imunológicos , Alumínio/farmacologia , Animais , Antígenos , Imunidade Celular , Camundongos , Camundongos Endogâmicos C57BL , Ovalbumina , Polissorbatos , Esqualeno , Água
14.
J Control Release ; 351: 394-406, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36167267

RESUMO

Extracellular vesicles (EVs) have emerged as promising candidates for multiple biomedical applications. Major types of EVs include exosomes, microvesicles, and apoptotic bodies (ABs). ABs are conferred most properties from parent cells in the final stages of apoptosis. A wide variety of sources and stable morphological features are endowed to ABs by the rigorous apoptotic program. ABs accommodate more functional biomolecules by relying on the larger volume and maintaining their naturalness in circulation. The predominant body surface ratio of ABs facilitates their recognition by recipient cells and is advantageous for interactions with microenvironments. ABs can modulate and alleviate symptoms of numerous diseases for their origins, circulation, and high biocompatibility. In addition, ABs have been emerging in disease diagnosis, immunotherapy, regenerative therapy, and drug delivery. Here, we aim to present a thorough discussion on current knowledge about ABs. Of particular interest, we will summarize the application of AB-based strategies for diagnosis and disease therapy. Perspectives for the development of ABs in biomedical applications are highlighted.


Assuntos
Micropartículas Derivadas de Células , Exossomos , Vesículas Extracelulares , Sistemas de Liberação de Medicamentos , Apoptose
15.
Mol Ther Oncolytics ; 27: 256-269, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36458200

RESUMO

The clinical use of anti-EGFR antibody-based cancer therapy has been limited by antibody-EGFR binding in normal tissues, so developing pH-dependent anti-EGFR antibodies that selectively bind with EGFR in tumors-by taking advantage of the acidity of tumor microenvironment relative to normal tissues-may overcome these limitations. Here, we generated pH-dependent anti-EGFR antibodies with cross-species reactivity for human and mouse EGFR, and we demonstrate that pH-dependent antibodies exhibit tumor-selective binding by binding strongly to EGFR under acidic conditions (pH 6.5) but binding weakly under neutral (pH 7.4) conditions. Based on screening a non-immune human antibody library and antibody affinity maturation, we initially generated antibodies with cross-species reactivity for human and mouse EGFR. A structure model was subsequently constructed and interrogated for hotspots affecting pH-dependent binding, which supported development of a cross-reactive pH-dependent anti-EGFR antibody, G532. Compared with its non-pH-dependent antibody variant, G532 exhibits improved tumor selectivity, tumor penetration, and antitumor activity. Thus, beyond showing that pH-dependent anti-EGFR antibodies can overcome multiple limitations with antibody-based cancer therapies targeting EGFR, our study illustrates a structure-guided antibody-antigen binding pH-dependency engineering strategy to enhance antibody tumor selectivity and tumor penetration, which can inform the future development of antibody-based cancer therapies targeting other ubiquitously expressed molecules.

16.
AAPS J ; 23(2): 32, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33629139

RESUMO

As one of the most important metabolites of vitamin A, all-trans retinoic acid (RA) plays a crucial role in regulating immune responses. RA has been shown to promote the differentiation of naïve T and B cells and perform diverse functions in the presence of different cytokines. RA also induces gut tropic lymphocytes through upregulating the expression of chemokine (C-C motif) receptor 9 (CCR9) and α4ß7 integrin. In addition, RA promotes the expression of the enzyme retinal dehydrogenase (RALDH) on dendritic cells, which in turn strengthens the ability to synthesize RA. Due to the insolubility of RA, proper formulation design can maximize its ability to improve immune responses for vaccines. Recent studies have developed some formulations co-loading RA and antigen, which can effectively imprint lymphocytes gut homing properties and induce intestine immune responses as well as systemic responses through parenteral administration, providing a promising direction for the protection against mucosal infections. Here, we review the mechanism and effects of RA on lymphocyte differentiation and gut homing, and recent progress of RA delivery systems to improve mucosal immune responses.


Assuntos
Portadores de Fármacos/química , Imunidade nas Mucosas/efeitos dos fármacos , Enteropatias/prevenção & controle , Tretinoína/administração & dosagem , Vacinas/administração & dosagem , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/química , Animais , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/imunologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Modelos Animais de Doenças , Composição de Medicamentos/métodos , Humanos , Imunogenicidade da Vacina , Enteropatias/imunologia , Enteropatias/microbiologia , Mucosa Intestinal/citologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/imunologia , Camundongos , Solubilidade , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Tretinoína/química , Tretinoína/imunologia , Excipientes de Vacinas/química , Vacinas/química , Vacinas/imunologia
17.
Animal Model Exp Med ; 2(4): 269-281, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31942559

RESUMO

BACKGROUND: Middle East respiratory syndrome coronavirus (MERS-CoV), which is not fully understood in regard to certain transmission routes and pathogenesis and lacks specific therapeutics and vaccines, poses a global threat to public health. METHODS: To simulate the clinical aerosol transmission route, hDPP4 transgenic mice were infected with MERS-CoV by an animal nose-only exposure device and compared with instillation-inoculated mice. The challenged mice were observed for 14 consecutive days and necropsied on days 3, 5, 7, and 9 to analyze viral load, histopathology, viral antigen distribution, and cytokines in tissues. RESULTS: MERS-CoV aerosol-infected mice with an incubation period of 5-7 days showed weight loss on days 7-11, obvious lung lesions on day 7, high viral loads in the lungs on days 3-9 and in the brain on days 7-9, and 60% survival. MERS-CoV instillation-inoculated mice exhibited clinical signs on day 1, obvious lung lesions on days 3-5, continuous weight loss, 0% survival by day 5, and high viral loads in the lungs and brain on days 3-5. Viral antigen and high levels of proinflammatory cytokines and chemokines were detected in the aerosol and instillation groups. Disease, lung lesion, and viral replication progressions were slower in the MERS-CoV aerosol-infected mice than in the MERS-CoV instillation-inoculated mice. CONCLUSION: hDPP4 transgenic mice were successfully infected with MERS-CoV aerosols via an animal nose-only exposure device, and aerosol- and instillation-infected mice simulated the clinical symptoms of moderate diffuse interstitial pneumonia. However, the transgenic mice exposed to aerosol MERS-CoV developed disease and lung pathology progressions that more closely resembled those observed in humans.

18.
Int J Nanomedicine ; 8: 4441-52, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24293996

RESUMO

A novel injectable bone cement was developed by integration of nano calcium-deficient hydroxyapatite/multi(amino acid) copolymer (n-CDHA/MAC) and calcium sulfate hemihydrate (CSH; CaSO4 · 1/2H2O). The structure, setting time, and compressive strength of the cement were investigated. The results showed that the cement with a liquid to powder ratio of 0.8 mL/g exhibited good injectability and appropriate setting time and mechanical properties. In vitro cell studies indicated that MC3T3-E1 cells cultured on the n-CDHA/MAC/CSH composite spread well and showed a good proliferation state. The alkaline phosphatase activity of the MC3T3-E1 cells cultured on the n-CDHA/MAC/CSH composite was significantly higher than that of the cells on pure CSH at 4 and 7 days of culture. The n-CDHA/MAC/CSH cement was implanted into critical size defects of the femoral condyle in rabbits to evaluate its biocompatibility and osteogenesis in vivo. Radiological and histological results indicated that introduction of the n-CDHA/MAC into CSH enhanced new bone formation, and the n-CDHA/MAC/CSH cement exhibited good biocompatibility and degradability. In conclusion, the injectable n-CDHA/MAC/CSH composite cement has a significant clinical advantage over pure CSH cement, and may be a promising bone graft substitute for the treatment of bone defects.


Assuntos
Cimentos Ósseos/química , Sulfato de Cálcio/química , Durapatita/química , Nanoestruturas/química , Fosfatase Alcalina/metabolismo , Análise de Variância , Animais , Cimentos Ósseos/farmacologia , Sulfato de Cálcio/farmacologia , Linhagem Celular , Forma Celular/efeitos dos fármacos , Força Compressiva , Durapatita/farmacologia , Fêmur/lesões , Consolidação da Fratura/efeitos dos fármacos , Teste de Materiais , Camundongos , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA