Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Chemistry ; 21(28): 10149-59, 2015 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-26043440

RESUMO

Heterojunctions of g-C3 N4 /Al2 O3 (g-C3 N4 =graphitic carbon nitride) are constructed by an in situ one-pot hydrothermal route based on the development of photoactive γ-Al2 O3 semiconductor with a mesoporous structure and a high surface area (188 m(2) g(-1) ) acting as electron acceptor. A structure modification function of g-C3 N4 for Al2 O3 in the hydrothermal process is found, which can be attributed to the coordination between unoccupied orbitals of the Al ions and lone-pair electrons of the N atoms. The as-synthesized heterojunctions exhibit much higher photocatalytic activity than pure g-C3 N4 . The hydrogen generation rate and the reaction rate constant for the degradation of methyl orange over 50 % g-C3 N4 /Al2 O3 under visible-light irradiation (λ>420 nm) are 2.5 and 7.3 times, respectively, higher than those over pristine g-C3 N4 . The enhanced activity of the heterojunctions is attributed to their large specific surface areas, their close contact, and the high interfacial areas between the components as well as their excellent adsorption performance, and efficient charge transfer ability.

2.
Chem Commun (Camb) ; 58(83): 11649-11652, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36129144

RESUMO

Inducing amorphous components into Al2O3 leads to elongation of the Al-O bond and the formation of oxygen vacancies, which makes Al2O3 an independent photocatalyst for CO2 adsorption and reduction. The generation rate of CO can reach 36.5 µmol g-1 h-1, which is 6.5 times that of P25 TiO2.

3.
Nanoscale ; 13(4): 2585-2592, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33480957

RESUMO

The main process of carbon dioxide (CO2) photoreduction is that excited electrons are transported to surface active sites to reduce adsorbed CO2 molecules. Obviously, electron transfer to the active site is one of the key steps in this process. However, current catalysts for CO2 adsorption, activation, and electron reduction occur in different locations, which greatly reduce the efficiency of photocatalysis. Herein, through a spontaneous chemical redox approach, the plasmonic photocatalysts of Au-BiOCl-OV with enhanced interfacial interaction were fabricated for visible light CO2 reduction through the simultaneous adsorption, activation and in situ reduction of CO2 without a sacrificial agent. By loading gold (Au) on the oxygen vacancy (OV), Au and BiOCl-OV formed a direct and tight interface contact, whose fine structure was confirmed by SEM, TEM, EPR and XPS, which not only effectively boosts the light utilization efficiency and the light carrier separation ability, but also can simultaneously adsorb, activate and in situ reduce carbon dioxide for highly efficient visible light photocatalysis. Thanks to the synergistic influence of Au and OV, Au-BiOCl-OV exhibits excellent photocatalytic performance without sacrificial agent and outstanding stability with a high CO and CH4 production yield, reaching 4.85 µmol g-1 h-1, which were 2.8 times higher than C-Au-BiOCl-OV (obtained by traditional NaBH4 reduction). This study proposes a new strategy for the production of high-performance collaborative catalysis in photocatalytic CO2 reduction.

4.
Chem Commun (Camb) ; 57(76): 9676-9679, 2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34555138

RESUMO

In this paper, it is found that the preferential growth of secondary {117} facets of Bi24O31Br10 into dominant facets would lead to higher photocatalytic activity, although the original main {213} facet has a stronger molecular oxygen adsorption ability, which illustrates that the charge separation efficiency induced by dominant/secondary facet control plays a more important role than that of O2 adsorptive performance in improving activity.

5.
J Hazard Mater ; 401: 123262, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-32629345

RESUMO

Constructing heterojunctions would result in the change of valence band position, which is an important factor determining the oxidative ability of photo-induced holes, has received scant attention. In this paper, ß-Bi2O3/Bi2O2CO3 composites with different ratios were obtained via ionic-liquid-assisted solvothermal and in-situ calcination processes. UV-vis DRS, Mott-Schottky test, and Kelvin probe measurement showed the change of band gaps of ß-Bi2O3 and Bi2O2CO3 before and after heterojunction formation. SPV, ESR, photocurrent, and scavenger experiments identified the separation efficiency of photo-generated electrons and holes, as well as the active species generated in the photocatalytic process. The photocatalytic mechanism was investigated by the degradation of Rhodamine B (RhB) upon visible-light and simulated sunlight, respectively. The results demonstrated that ß-Bi2O3/Bi2O2CO3 heterojunctions possessed enhanced separation efficiency and higher degradation ability than the individuals under visible-light irradiation due to effective electron transfer. However, lower performance under simulated sunlight was observed, although their separation efficiency remained high. The decisive reason for this was that the up-shift of valence band of Bi2O2CO3 induced by hybridization and the transition of holes from VB of Bi2O2CO3 to that of ß-Bi2O3 with more negative potential decreased the oxidative ability of holes, which surpassed the positive influence of enhanced separation efficiency.

6.
ACS Appl Mater Interfaces ; 12(19): 21761-21771, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32298073

RESUMO

Methane is a greenhouse gas that contributes to global warming. Hence, effectively removing the low concentration (<1000 ppm) of methane in the environment is an issue that deserves research in the field of catalysis. In this study, oxygen-magnesium bivacancies are simultaneously imbedded into MgO by designing an in situ reduction combustion atmosphere for oxygen release and substituting magnesium with carbon to induce the formation of magnesium vacancies. The DFT calculations reveal that the surface electron density of MgO is improved by the oxygen vacancy structure and the substitution of Mg by C in bulk; this accelerates migration of the charge from the material surface to the adsorbed oxygen species, which leads to abundant surface peroxide species that enable activation and oxidation of methane at a low temperature (below 200 °C). This work could provide a concept for developing non-noble or transition metal oxides for low-temperature activation and conversion of alkanes in the thermocatalytic field through reactive oxygen species.

7.
ACS Appl Mater Interfaces ; 9(14): 12687-12693, 2017 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-28339179

RESUMO

Seeking a simple and moderate route to generate reactive oxygen species (ROS) for antibiosis is of great interest and challenge. This work demonstrates that molecule transition and electron rearrangement processes can directly occur only through chemisorption interaction between the adsorbed O2 and high-energy {111} facet-exposed MgO with abundant surface oxygen vacancies (SOVs), hence producing singlet oxygen and superoxide anion radicals without light irradiation. These ROS were confirmed by electron paramagnetic resonance, in situ Raman, and scavenger experiments. Furthermore, heat plays a crucial role for the electron transfer process to accelerate the formation of ·O2-, which is verified by temperature kinetic experiments of nitro blue tetrazolium reduction in the dark. Therefore, the presence of oxygen vacancy can be considered as an intensification of the activation process. The designed MgO is acquired in one step via constructing a reduction atmosphere during the combustion reaction process, which has an ability similar to that of noble metal Pd to activate molecular oxygen and can be used as an effective bacteriocide in the dark.

8.
Dalton Trans ; 45(6): 2444-53, 2016 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-26660856

RESUMO

Porous sphere-like tricobalt tetraoxide (Co3O4)-cobalt chloride hydrate (CoCl2·6H2O, CCH) heterojunctions are obtained using a one-step facile solution combustion route. The heterostructure is confirmed by XRD, HRTEM, and XPS measurements. Their photocatalytic performances are evaluated by the degradation of methyl orange (MO) and the reduction removal of Cr(VI) ions under visible light irradiation. The heterojunction containing 81.5 wt% Co3O4 and 18.5 wt% CCH exhibits the highest photocatalytic performance, for which the pseudo-first-order reaction rate constant is 10.0 and 8.7 times that of pure Co3O4 towards MO degradation and Cr(vi) reduction, respectively. This enhancement in activity can be attributed to the effective electron transfer from the conduction band of Co3O4 to that of CCH, which is verified with a double increase of the photocurrent valve of the heterojunction sample electrode in comparison with the bare Co3O4 sample electrode. Electron paramagnetic resonance, fluorescence spectrophotometry and scavenger experiments indicate that photo-induced holes, and hydroxyl and superoxide anion radicals are the active species responsible for the photo-oxidation of MO. The reasons for the formation of these species are discussed and proposed based on the band gap structures of Co3O4 and CCH. The recycling experiment results indicate that the activity can be regained by a remedial experiment.

9.
Sci Rep ; 6: 24918, 2016 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-27114050

RESUMO

Surface defect of nanomaterials is an important physical parameter which significantly influences their physical and chemical performances. In this work, high concentration of surface oxygen vancancies (SOVs) are successfully introduced on {001} facets exposed BiOBr nanosheets via a simple surface modification using polybasic carboxylic acids. The chelation interaction between carboxylic acid anions and Bi(3+) results in the weakness of Bi-O bond of BiOBr. Afterwards, under visible-light irradiation, the oxygen atoms would absorb the photo-energy and then be released from the surface of BiOBr, leaving SOVs. The electron spin resonance (ESR), high-resolution transmission electron microscopy (HRTEM), and UV-vis diffuse reflectance spectra (DRS) measurements confirm the existence of SOVs. The SOVs can enhance the absorption in visible light region and improve the separation efficiency of photo-generated charges. Hence, the transformation rate of adsorbed O2 on the as-prepared BiOBr with SOVs to superoxide anion radicals (•O2(-)) and the photocatalytic activity are greatly enhanced. Based on the modification by several carboxylic acids and the photocatalytic results, we propose that carboxylic acids with natural bond orbital (NBO) electrostatic charges absolute values greater than 0.830 are effective in modifying BiOBr.

10.
Dalton Trans ; 44(40): 17859-66, 2015 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-26399735

RESUMO

A Ti species modified g-C3N4 photocatalyst was synthesized via an in situ hydrothermal route and the subsequent low-temperature calcination. The hydrothermal process results in not only the fabrication of TiO2/g-C3N4 heterojunctions, but also the coordination between Ti species and g-C3N4, which are verified by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The electrical resistance test confirms that the coordination can improve the electrical conductivity of composites and can make the charge transfer easier. The photoluminescence (PL) and photocurrent measurements exhibit that the hybridization enhances the separation efficiency of photo-induced electrons and holes. As a result, the Ti species modified g-C3N4 photocatalysts exhibit much higher photocatalytic H2 evolution than the simple heterojunction of TiO2/g-C3N4 obtained via a microwave method and the mechanical mixture of TiO2 and g-C3N4 under visible-light irradiation. The coordination mechanism and synthesis route of TiO2/g-C3N4 heterojunctions are proposed.

11.
J Hazard Mater ; 283: 371-81, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25306536

RESUMO

Novel Al2O3/g-C3N4 heterojunction photocatalysts were fabricated through ultrasonic dispersion method. Al2O3, obtained via solution combustion, contained amorphous ingredient with lots of defect sites and was used as active component for transferring photo-induced electrons of g-C3N4. G-C3N4 was grafted surface hydroxyl groups in the presence of ammonia aqueous solution to combine with Al2O3 possessing positive charges via hydrogen bond. The XRD, SEM, element map, TEM, HRTEM, FT-IR, and XPS results indicate that these synthesized materials are two-phase hybrids of Al2O3 and g-C3N4 with interaction. The photocatalytic results for the degradation of rhodamine B (RhB) indicate that the most active heterojunction proportion is 60wt.% g-C3N4:40wt.% Al2O3, the visible light photocatalytic activity of which is 3.8 times that of a mechanical mixture. The enhanced performance is attributed to the high separation efficiency of photo-induced electrons from the LUMO of g-C3N4 injected into the defect sites of Al2O3, which is verified by photoluminescence spectroscopy (PL) and surface photovoltage (SPV) measurements. The electron paramagnetic resonance (EPR) signals and radical scavengers trapping experiments reveal holes (h(+)) and superoxide anion radical (O2(-)) are the main active species responsible for the degradation of RhB.


Assuntos
Hidróxido de Alumínio/química , Modelos Químicos , Nitrilas/química , Radical Hidroxila/química , Processos Fotoquímicos , Rodaminas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Poluentes Químicos da Água/química
12.
Nanoscale ; 7(3): 1116-26, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25482071

RESUMO

Heterostructured BiOBr/Bi24O31Br10 nanocomposites with surface oxygen vacancies are constructed by a facile in situ route of one-step self-combustion of ionic liquids. The compositions can be easily controlled by simply adjusting the fuel ratio of urea and 2-bromoethylamine hydrobromide (BTH). BTH serves not only as a fuel, but also as a complexing agent for ionic liquids and a reactant to supply the Br element. The heterojunctions show remarkable adsorptive ability for both the cationic dye of rhodamine B (RhB) and the anionic dye of methylene orange (MO) at high concentrations, which is attributed to the abundant surface oxygen vacancies. The sample containing 75.2% BiOBr and 24.8% Bi24O31Br10 exhibits the highest photocatalytic activity. Its reaction rate constant is 4.0 and 9.0 times that of pure BiOBr in degrading 50 mg L(-1) of RhB and 30 mg L(-1) of MO under visible-light (λ > 400 nm) irradiation, respectively, which is attributed to the narrow band gap and highly efficient transfer efficiency of charge carriers. Different photocatalytic reaction processes and mechanisms over pure BiOBr and heterojunctions are proposed.

13.
Chin Med J (Engl) ; 125(16): 2858-61, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22932080

RESUMO

BACKGROUND: Copernicus optical coherence tomography (SOCT) is a new, ultra high-speed and high-resolution instrument available for clinical evaluation of optic nerve. The purpose of the study was to compare the agreements between SOCT and Heidelberg retinal tomography (HRT). METHODS: A total of 44 healthy normal volunteers were recruited in this study. One eye in each subject was selected randomly. Agreement between SOCT and HRT-3 in measuring optic disc area was assessed using Bland-Altman plots. Relationships between measurements of optic nerve head parameter obtained by SOCT and HRT-3 were assessed by Pearson correlation. RESULTS: There was no significant difference in the average cup area (0.306 vs. 0.355 mm, P = 0.766), cup volume (0.158 vs. 0.130 mm, P = 0.106) and cup/disc ration (0.394 vs. 0.349 mm, P = 0.576) measured by the two instruments. However, other optic disc parameters from SOCT were significantly lower compared with HRT-3. The Bland-Altman plot revealed good agreement of cup area and cup volume measured by SOCT and HRT-3. Bad agreement of disc area, rim area, rim volume and cup/disc ratio were found between SOCT and HRT-3. The highest correlations between the two instruments were observed for cup area (r(2) = 0.783, P = 0.000) and cup/disc ratio (r(2) = 0.669, P = 0.000), whereas the lowest correlation was observed for disc area (r(2) = 0.100, P = 0.037), rim area (r(2) = 0.275, P = 0.000), cup volume (r(2) = 0.005, P = 0.391) and rim volume (r(2) = 0.021, P = 0.346). CONCLUSIONS: There were poor agreements between SOCT and HRT-3 for measurement of optic nerve parameters except cup area and cup volume. Measurement results of the two instruments are not interchangeable.


Assuntos
Disco Óptico/patologia , Retina/patologia , Tomografia de Coerência Óptica/métodos , Tomografia/métodos , Adolescente , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
14.
J Hazard Mater ; 239-240: 118-27, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23021102

RESUMO

Nitrogen-doped Degussa P25 TiO2-amorphous Al2O3 composites were prepared via facile solution combustion. The composites were characterised using X-ray diffraction, high-resolution transmission microscopy, scanning electron microscopy, nitrogen adsorption-desorption measurements, X-ray photoelectron spectroscopy, UV-vis light-diffusion reflectance spectrometry (DRS), zeta-potential measurements, and photoluminescence spectroscopy. The DRS results showed that TiO2 and amorphous Al2O3 exhibited absorption in the UV region. However, the Al2O3/TiO2 composite exhibited visible-light absorption, which was attributed to N-doping during high-temperature combustion and to alterations in the electronic structure of Ti species induced by the addition of Al. The optimal molar ratio of TiO2 to Al2O3 was 1.5:1, and this composite exhibited a large specific surface area of 152 m2/g, surface positive charges, and enhanced photocatalytic activity. These characteristics enhanced the degradation rate of anionic methylene orange, which was 43.6 times greater than that of pure P25 TiO2. The high visible-light photocatalytic activity was attributed to synthetic effects between amorphous Al2O3 and TiO2, low recombination efficiency of photo-excited electrons and holes, N-doping, and a large specific surface area. Experiments that involved radical scavengers indicated that OH and O2- were the main reactive species. A potential photocatalytic mechanism was also proposed.


Assuntos
Óxido de Alumínio/química , Corantes/química , Azul de Metileno/química , Titânio/química , Poluentes Químicos da Água/química , Adsorção , Óxido de Alumínio/efeitos da radiação , Catálise , Corantes/efeitos da radiação , Temperatura Alta , Luz , Azul de Metileno/efeitos da radiação , Nitrogênio/química , Fotólise , Titânio/efeitos da radiação , Poluentes Químicos da Água/efeitos da radiação
15.
J Hazard Mater ; 205-206: 164-70, 2012 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-22230756

RESUMO

A new C5H9NO·SnCl2 coordinated ionic liquid (IL) was prepared by reacting N-methyl-pyrrolidone with anhydrous SnCl2. Desulfurization of dibenzothiophene (DBT) via extraction and oxidation with C5H9NO·SnCl2 IL as extractant, H2O2 and equal mol of CH3COOH as oxidants was investigated. The Nernst partition coefficients k(N) of C5H9NO·SnCl2 IL for the DBT in n-octane was above 5.0, showing its excellent extraction ability. During the oxidative desulfurization process, the optimal molar ratio of H2O2/DBT was six. Sulfur removal of DBT in n-octane was 94.8% in 30 min at 30 °C under the conditions of H2O2/DBT molar ratio of six and V (IL):V (oil)=1:3. Moreover, the sulfur removal increased with increasing temperature because of the high reaction rate constant, low viscosity, and high solubility of dibenzothiophene-sulfone in the IL. The kinetics of oxidative desulfurization of DBT was also investigated, and the apparent activation energy was found to be 32.5 kJ/mol. The IL could be recycled six times without a significant decrease in activity.


Assuntos
Líquidos Iônicos/química , Pirrolidinonas/química , Enxofre/química , Tiofenos/química , Compostos de Estanho/química , Poluição do Ar/prevenção & controle , Óleos Combustíveis , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA