Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Plant Biotechnol J ; 22(5): 1198-1205, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38410834

RESUMO

Plants have evolved a multi-layered immune system to fight off pathogens. However, immune activation is costly and is often associated with growth and development penalty. In crops, yield is the main breeding target and is usually affected by high disease resistance. Therefore, proper balance between growth and defence is critical for achieving efficient crop improvement. This review highlights recent advances in attempts designed to alleviate the trade-offs between growth and disease resistance in crops mediated by resistance (R) genes, susceptibility (S) genes and pleiotropic genes. We also provide an update on strategies for optimizing the growth-defence trade-offs to breed future crops with desirable disease resistance and high yield.


Assuntos
Resistência à Doença , Melhoramento Vegetal , Resistência à Doença/genética , Produtos Agrícolas/genética
2.
PLoS Pathog ; 14(1): e1006878, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29385213

RESUMO

Potassium (K+) is required by plants for growth and development, and also contributes to immunity against pathogens. However, it has not been established whether pathogens modulate host K+ signaling pathways to enhance virulence and subvert host immunity. Here, we show that the effector protein AvrPiz-t from the rice blast pathogen Magnaporthe oryzae targets a K+ channel to subvert plant immunity. AvrPiz-t interacts with the rice plasma-membrane-localized K+ channel protein OsAKT1 and specifically suppresses the OsAKT1-mediated K+ currents. Genetic and phenotypic analyses show that loss of OsAKT1 leads to decreased K+ content and reduced resistance against M. oryzae. Strikingly, AvrPiz-t interferes with the association of OsAKT1 with its upstream regulator, the cytoplasmic kinase OsCIPK23, which also plays a positive role in K+ absorption and resistance to M. oryzae. Furthermore, we show a direct correlation between blast disease resistance and external K+ status in rice plants. Together, our data present a novel mechanism by which a pathogen suppresses plant host immunity by modulating a host K+ channel.


Assuntos
Evasão da Resposta Imune , Magnaporthe/fisiologia , Oryza/microbiologia , Canais de Potássio/genética , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Evasão da Resposta Imune/genética , Imunidade Inata/genética , Magnaporthe/patogenicidade , Organismos Geneticamente Modificados , Oryza/genética , Oryza/imunologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Plantas Geneticamente Modificadas , Canais de Potássio/metabolismo , Virulência/genética
3.
Dev Cell ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-39025063

RESUMO

The ubiquitin-proteasome system (UPS) plays crucial roles in cellular processes including plant growth, development, and stress responses. In this study, we report that a pair of E3 ubiquitin ligases, AvrPiz-t-interaction protein 6 (APIP6) and IPA1-interaction protein 1 (IPI1), intricately target early flowering3 (ELF3) paralogous proteins to control rice immunity and flowering. APIP6 forms homo-oligomers or hetero-oligomers with IPI1. Both proteins interact with OsELF3-2, promoting its degradation to positively control resistance against the rice blast fungus (Magnaporthe oryzae). Intriguingly, overexpression of IPI1 in Nipponbare caused significantly late-flowering phenotypes similar to the oself3-1 mutant. Except for late flowering, oself3-1 enhances resistance against M. oryzae. IPI1 also interacts with and promotes the degradation of OsELF3-1, a paralog of OsELF3-2. Notably, IPI1 and APIP6 synergistically modulate OsELF3s degradation, finely tuning blast disease resistance by targeting OsELF3-2, while IPI1 controls both disease resistance and flowering by targeting OsELF3-1. This study unravels multiple functions for a pair of E3 ligases in rice.

4.
Cell Rep ; 42(10): 113315, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37862164

RESUMO

The receptor protein PEX5, an important component of peroxisomes, regulates growth, development, and immunity in yeast and mammals. PEX5 also influences growth and development in plants, but whether it participates in plant immunity has remained unclear. Here, we report that knockdown of OsPEX5 enhances resistance to the rice blast fungus Magnaporthe oryzae. We demonstrate that OsPEX5 interacts with the E3 ubiquitin ligase APIP6, a positive regulator of plant immunity. APIP6 ubiquitinates OsPEX5 in vitro and promotes its degradation in vivo via the 26S proteasome pathway. In addition, OsPEX5 interacts with the aldehyde dehydrogenase OsALDH2B1, which functions in growth-defense trade-offs in rice. OsPEX5 stabilizes OsALDH2B1 to enhance its repression of the defense-related gene OsAOS2. Our study thus uncovers a previously unrecognized hierarchical regulatory mechanism in which an E3 ubiquitin ligase targets a peroxisome receptor protein that negatively regulates immunity in rice by stabilizing an aldehyde dehydrogenase that suppresses defense gene expression.


Assuntos
Ascomicetos , Magnaporthe , Magnaporthe/metabolismo , Ascomicetos/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Aldeído Desidrogenase/genética , Aldeído Desidrogenase/metabolismo , Doenças das Plantas , Resistência à Doença , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
5.
Mol Plant ; 16(11): 1832-1846, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37798878

RESUMO

Rice blast, caused by the fungal pathogen Magnaporthe oryzae, is one of the most important diseases of rice. Utilization of blast-resistance genes is the most economical, effective, and environmentally friendly way to control the disease. However, genetic resources with broad-spectrum resistance (BSR) that is effective throughout the rice growth period are rare. In this work, using a genome-wide association study, we identify a new blast-resistance gene, Pijx, which encodes a typical CC-NBS-LRR protein. Pijx is derived from a wild rice species and confers BSR to M. oryzae at both the seedling and panicle stages. The functions of the resistant haplotypes of Pijx are confirmed by gene knockout and overexpression experiments. Mechanistically, the LRR domain in Pijx interacts with and promotes the degradation of the ATP synthase ß subunit (ATPb) via the 26S proteasome pathway. ATPb acts as a negative regulator of Pijx-mediated panicle blast resistance, and interacts with OsRbohC to promote its degradation. Consistently, loss of ATPb function causes an increase in NAPDH content and ROS burst. Remarkably, when Pijx is introgressed into two japonica rice varieties, the introgression lines show BSR and increased yields that are approximately 51.59% and 79.31% higher compared with those of their parents in a natural blast disease nursery. In addition, we generate PPLPijx Pigm and PPLPijx Piz-t pyramided lines and these lines also have higher BSR to panicle blast compared with Pigm- or Piz-t-containing rice plants. Collectively, this study demonstrates that Pijx not only confers BSR to M. oryzae but also maintains high and stable rice yield, providing new genetic resources and molecular targets for breeding rice varieties with broad-spectrum blast resistance.


Assuntos
Magnaporthe , Oryza , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Plântula/genética , Plântula/metabolismo , Resistência à Doença/genética , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Trifosfato de Adenosina/metabolismo , Oryza/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Magnaporthe/genética
6.
Cell Rep ; 40(7): 111235, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35977497

RESUMO

Rice blast and bacterial blight, caused by the fungus Magnaporthe oryzae and the bacterium Xanthomonas oryzae pv. oryzae (Xoo), respectively, are devastating diseases affecting rice. Here, we report that a rice valine-glutamine (VQ) motif-containing protein, OsVQ25, balances broad-spectrum disease resistance and plant growth by interacting with a U-Box E3 ligase, OsPUB73, and a transcription factor, OsWRKY53. We show that OsPUB73 positively regulates rice resistance against M. oryzae and Xoo by interacting with and promoting OsVQ25 degradation via the 26S proteasome pathway. Knockout mutants of OsVQ25 exhibit enhanced resistance to both pathogens without a growth penalty. Furthermore, OsVQ25 interacts with and suppresses the transcriptional activity of OsWRKY53, a positive regulator of plant immunity. OsWRKY53 downstream defense-related genes and brassinosteroid signaling genes are upregulated in osvq25 mutants. Our findings reveal a ubiquitin E3 ligase-VQ protein-transcription factor module that fine-tunes plant immunity and growth at the transcriptional and posttranslational levels.


Assuntos
Magnaporthe , Oryza , Resistência à Doença , Regulação da Expressão Gênica de Plantas , Magnaporthe/metabolismo , Oryza/genética , Oryza/metabolismo , Oryza/microbiologia , Doenças das Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Xanthomonas
7.
Genome Biol ; 23(1): 154, 2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35821048

RESUMO

BACKGROUND: Ubiquitination is essential for many cellular processes in eukaryotes, including 26S proteasome-dependent protein degradation, cell cycle progression, transcriptional regulation, and signal transduction. Although numerous ubiquitinated proteins have been empirically identified, their cognate ubiquitin E3 ligases remain largely unknown. RESULTS: Here, we generate a complete ubiquitin E3 ligase-encoding open reading frames (UbE3-ORFeome) library containing 98.94% of the 1515 E3 ligase genes in the rice (Oryza sativa L.) genome. In the test screens with four known ubiquitinated proteins, we identify both known and new E3s. The interaction and degradation between several E3s and their substrates are confirmed in vitro and in vivo. In addition, we identify the F-box E3 ligase OsFBK16 as a hub-interacting protein of the phenylalanine ammonia lyase family OsPAL1-OsPAL7. We demonstrate that OsFBK16 promotes the degradation of OsPAL1, OsPAL5, and OsPAL6. Remarkably, we find that overexpression of OsPAL1 or OsPAL6 as well as loss-of-function of OsFBK16 in rice displayed enhanced blast resistance, indicating that OsFBK16 degrades OsPALs to negatively regulate rice immunity. CONCLUSIONS: The rice UbE3-ORFeome is the first complete E3 ligase library in plants and represents a powerful proteomic resource for rapid identification of the cognate E3 ligases of ubiquitinated proteins and establishment of functional E3-substrate interactome in plants.


Assuntos
Oryza , Ubiquitina-Proteína Ligases , Oryza/genética , Oryza/metabolismo , Proteômica , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Ubiquitinadas/genética , Proteínas Ubiquitinadas/metabolismo , Ubiquitinação , Ubiquitinas/genética , Ubiquitinas/metabolismo
8.
Sci Bull (Beijing) ; 66(23): 2381-2393, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36654124

RESUMO

Phenolamides (PAs), a diverse group of specialized metabolites, including hydroxycinnamoylputrescine (HP), hydroxycinnamoylagmatine, and hydroxycinnamoyltryptamine, are important in plant resistance to biotic stress. However, the genes involved in the biosynthesis and modulation of PAs have not been fully elucidated. This study identified an HP biosynthetic gene cluster in rice (Oryza sativa) comprising one gene (OsODC) encoding a decarboxylase and two tandem-duplicated genes (OsPHT3 and OsPHT4) encoding putrescine hydroxycinnamoyl acyltransferases coexpressed in different tissues. OsODC catalyzes the conversion of ornithine to putrescine, which is used in HP biosynthesis involving OsPHT3 and OsPHT4. OsPHT3 or OsPHT4 overexpression causes HP accumulation and cell death and putrescine hydroxycinnamoyl acyltransferases (PHT) activity-dependent resistance against the fungal pathogen Magnaporthe oryzae. OsODC overexpression plants also confer enhanced resistance to M. oryzae. Notably, the basic leucine zipper transcription factor APIP5, a negative regulator of cell death, directly binds to the OsPHT4 promoter, repressing its transcription. Moreover, APIP5 suppression induces OsPHT4 expression and HP accumulation. Comparative genomic analysis revealed that the HP biosynthetic gene cluster is conserved in monocots. These results characterized a previously unidentified monocot-specific gene cluster that is involved in HP biosynthesis and contributes to defense and cell death in rice.


Assuntos
Oryza , Oryza/genética , Putrescina/metabolismo , Família Multigênica , Morte Celular/genética , Aciltransferases/genética
9.
Mol Plant ; 14(2): 253-266, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33186754

RESUMO

Nucleotide-binding leucine-rich repeat (NLR) proteins play critical roles in plant immunity. However, how NLRs are regulated and activate defense signaling is not fully understood. The rice (Oryza sativa) NLR receptor Piz-t confers broad-spectrum resistance to the fungal pathogen Magnaporthe oryzae and the RING-type E3 ligase AVRPIZ-T INTERACTING PROTEIN 10 (APIP10) negatively regulates Piz-t accumulation. In this study, we found that APIP10 interacts with two rice transcription factors, VASCULAR PLANT ONE-ZINC FINGER 1 (OsVOZ1) and OsVOZ2, and promotes their degradation through the 26S proteasome pathway. OsVOZ1 displays transcriptional repression activity while OsVOZ2 confers transcriptional activation activity in planta. The osvoz1 and osvoz2 single mutants display modest but opposite M. oryzae resistance in the non-Piz-t background. However, the osvoz1 osvoz2 double mutant exhibits strong dwarfism and cell death, and silencing of both genes via RNA interference also leads to dwarfism, mild cell death, and enhanced resistance to M. oryzae in the non-Piz-t background. Both OsVOZ1 and OsVOZ2 interact with Piz-t. Double silencing of OsVOZ1 and OsVOZ2 in the Piz-t background decreases Piz-t protein accumulation and transcription, reactive oxygen species-dependent cell death, and resistance to M. oryzae containing AvrPiz-t. Taken together, these results indicate that OsVOZ1 and OsVOZ2 negatively regulate basal defense but contribute positively to Piz-t-mediated immunity.


Assuntos
Proteínas NLR/metabolismo , Oryza/imunologia , Imunidade Vegetal , Proteínas de Plantas/metabolismo , Receptores Imunológicos/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Magnaporthe/fisiologia , Modelos Biológicos , Oryza/genética , Oryza/microbiologia , Doenças das Plantas/microbiologia , Ligação Proteica , Proteólise , Proteínas Repressoras/metabolismo , Transativadores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA