Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Cell ; 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39236707

RESUMO

In 2022, mpox virus (MPXV) spread worldwide, causing 99,581 mpox cases in 121 countries. Modified vaccinia Ankara (MVA) vaccine use reduced disease in at-risk populations but failed to deliver complete protection. Lag in manufacturing and distribution of MVA resulted in additional MPXV spread, with 12,000 reported cases in 2023 and an additional outbreak in Central Africa of clade I virus. These outbreaks highlight the threat of zoonotic spillover by Orthopoxviruses. mRNA-1769, an mRNA-lipid nanoparticle (LNP) vaccine expressing MPXV surface proteins, was tested in a lethal MPXV primate model. Similar to MVA, mRNA-1769 conferred protection against challenge and further mitigated symptoms and disease duration. Antibody profiling revealed a collaborative role between neutralizing and Fc-functional extracellular virion (EV)-specific antibodies in viral restriction and ospinophagocytic and cytotoxic antibody functions in protection against lesions. mRNA-1769 enhanced viral control and disease attenuation compared with MVA, highlighting the potential for mRNA vaccines to mitigate future pandemic threats.

2.
Front Immunol ; 9: 205, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29483914

RESUMO

Middle East respiratory syndrome coronavirus (MERS-CoV) has recently emerged in the Middle East. Since 2012, there have been approximately 2,100 confirmed cases, with a 35% case fatality rate. Disease severity has been linked to patient health status, as people with chronic diseases or an immunocompromised status fare worse, although the mechanisms of disease have yet to be elucidated. We used the rhesus macaque model of mild MERS to investigate whether the immune response plays a role in the pathogenicity in relation to MERS-CoV shedding. Immunosuppressed macaques were inoculated with MERS-CoV and sampled daily for 6 days to assess their immune statues and to measure viral shedding and replication. Immunosuppressed macaques supported significantly higher levels of MERS-CoV replication in respiratory tissues and shed more virus, and virus disseminated to tissues outside of the respiratory tract, whereas viral RNA was confined to respiratory tissues in non-immunosuppressed animals. Despite increased viral replication, pathology in the lungs was significantly lower in immunosuppressed animals. The observation that the virus was less pathogenic in these animals suggests that disease has an immunopathogenic component and shows that inflammatory responses elicited by the virus contribute to disease.


Assuntos
Infecções por Coronavirus/imunologia , Interações entre Hospedeiro e Microrganismos/imunologia , Hospedeiro Imunocomprometido/imunologia , Coronavírus da Síndrome Respiratória do Oriente Médio/patogenicidade , Eliminação de Partículas Virais/imunologia , Animais , Chlorocebus aethiops , Infecções por Coronavirus/virologia , Modelos Animais de Doenças , Feminino , Humanos , Pulmão/imunologia , Pulmão/virologia , Macaca mulatta , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Coronavírus da Síndrome Respiratória do Oriente Médio/isolamento & purificação , RNA Viral/isolamento & purificação , Células Vero , Replicação Viral/imunologia
3.
Pathog Dis ; 71(2): 96-101, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24535887

RESUMO

The National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, is a globally unique biocontainment research facility housing biosafety level 2 (BSL-2), BSL-3, and BSL-4 laboratories. Located in the BioSquare area at the University's Medical Campus, it is part of a national network of secure facilities constructed to study infectious diseases of major public health concern. The NEIDL allows for basic, translational, and clinical phases of research to be carried out in a single facility with the overall goal of accelerating understanding, treatment, and prevention of infectious diseases. The NEIDL will also act as a center of excellence providing training and education in all aspects of biocontainment research. Within every detail of NEIDL operations is a primary emphasis on safety and security. The ultramodern NEIDL has required a new approach to communications technology solutions in order to ensure safety and security and meet the needs of investigators working in this complex building. This article discusses the implementation of secure wireless networks and private cloud computing to promote operational efficiency, biosecurity, and biosafety with additional energy-saving advantages. The utilization of a dedicated data center, virtualized servers, virtualized desktop integration, multichannel secure wireless networks, and a NEIDL-dedicated Voice over Internet Protocol (VoIP) network are all discussed.


Assuntos
Metodologias Computacionais , Contenção de Riscos Biológicos , Laboratórios , Telecomunicações , Pesquisa Biomédica/métodos , Doenças Transmissíveis Emergentes/diagnóstico , Doenças Transmissíveis Emergentes/tratamento farmacológico , Doenças Transmissíveis Emergentes/etiologia , Humanos , Saúde Ocupacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA