Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Glia ; 72(2): 375-395, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37909242

RESUMO

White matter abnormalities, related to poor cerebral perfusion, are a core feature of small vessel cerebrovascular disease, and critical determinants of vascular cognitive impairment and dementia. Despite this importance there is a lack of treatment options. Proliferation of microglia producing an expanded, reactive population and associated neuroinflammatory alterations have been implicated in the onset and progression of cerebrovascular white matter disease, in patients and in animal models, suggesting that targeting microglial proliferation may exert protection. Colony-stimulating factor-1 receptor (CSF1R) is a key regulator of microglial proliferation. We found that the expression of CSF1R/Csf1r and other markers indicative of increased microglial abundance are significantly elevated in damaged white matter in human cerebrovascular disease and in a clinically relevant mouse model of chronic cerebral hypoperfusion and vascular cognitive impairment. Using the mouse model, we investigated long-term pharmacological CSF1R inhibition, via GW2580, and demonstrated that the expansion of microglial numbers in chronic hypoperfused white matter is prevented. Transcriptomic analysis of hypoperfused white matter tissue showed enrichment of microglial and inflammatory gene sets, including phagocytic genes that were the predominant expression modules modified by CSF1R inhibition. Further, CSF1R inhibition attenuated hypoperfusion-induced white matter pathology and rescued spatial learning impairments and to a lesser extent cognitive flexibility. Overall, this work suggests that inhibition of CSF1R and microglial proliferation mediates protection against chronic cerebrovascular white matter pathology and cognitive deficits. Our study nominates CSF1R as a target for the treatment of vascular cognitive disorders with broader implications for treatment of other chronic white matter diseases.


Assuntos
Transtornos Cerebrovasculares , Transtornos Cognitivos , Disfunção Cognitiva , Leucoencefalopatias , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos , Substância Branca , Animais , Camundongos , Transtornos Cerebrovasculares/metabolismo , Transtornos Cerebrovasculares/patologia , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/patologia , Disfunção Cognitiva/metabolismo , Modelos Animais de Doenças , Leucoencefalopatias/genética , Leucoencefalopatias/metabolismo , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Receptores de Fator Estimulador de Colônias/metabolismo , Substância Branca/patologia , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/antagonistas & inibidores , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo
2.
Neurobiol Dis ; 185: 106255, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37558170

RESUMO

Brain metabolic pathways relating to bioenergetic and redox homeostasis are closely linked, and deficits in these pathways are thought to occur in many neurodegenerative diseases. Astrocytes play important roles in both processes, and growing evidence suggests that neuron-astrocyte intercellular signalling ensures brain bioenergetic and redox homeostasis in health. Moreover, alterations to this crosstalk have been observed in the context of neurodegenerative pathology. In this review, we summarise the current understanding of how neuron-astrocyte interactions influence brain metabolism and antioxidant functions in health as well as during neurodegeneration. It is apparent that deleterious and adaptive protective responses alter brain metabolism in disease, and that knowledge of both may illuminate targets for future therapeutic interventions.


Assuntos
Doenças Neurodegenerativas , Humanos , Doenças Neurodegenerativas/metabolismo , Astrócitos/metabolismo , Oxirredução , Encéfalo/metabolismo , Neurônios/metabolismo
3.
Nat Rev Neurosci ; 19(1): 9-15, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29167525

RESUMO

Excitation-transcription coupling shapes network formation during brain development and controls neuronal survival, synaptic function and cognitive skills in the adult. New studies have uncovered differences in the transcriptional responses to synaptic activity between humans and mice. These differences are caused both by the emergence of lineage-specific activity-regulated genes and by the acquisition of signal-responsive DNA elements in gene regulatory regions that determine whether a gene can be transcriptionally induced by synaptic activity or alter the extent of its inducibility. Such evolutionary divergence may have contributed to lineage-related advancements in cognitive abilities.


Assuntos
Linhagem da Célula/genética , Cognição/fisiologia , Regulação da Expressão Gênica/fisiologia , Transmissão Sináptica/genética , Transmissão Sináptica/fisiologia , Transcrição Gênica/fisiologia , Ativação Transcricional/fisiologia , Animais , Humanos , Camundongos , Especificidade da Espécie
4.
J Neurol Neurosurg Psychiatry ; 93(2): 126-132, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34362854

RESUMO

BACKGROUND: Inflammatory responses to intracerebral haemorrhage (ICH) are potential therapeutic targets. We aimed to quantify molecular markers of inflammation in human brain tissue after ICH compared with controls using meta-analysis. METHODS: We searched OVID MEDLINE (1946-) and Embase (1974-) in June 2020 for studies that reported any measure of a molecular marker of inflammation in brain tissue from five or more adults after ICH. We assessed risk of bias using a modified Newcastle-Ottawa Scale (mNOS; mNOS score 0-9; 9 indicates low bias), extracted aggregate data, and used random effects meta-analysis to pool associations of molecules where more than two independent case-control studies reported the same outcome and Gene Ontology enrichment analysis to identify over-represented biological processes in pooled sets of differentially expressed molecules (International Prospective Register of Systematic Reviews ID: CRD42018110204). RESULTS: Of 7501 studies identified, 44 were included: 6 were case series and 38 were case-control studies (median mNOS score 4, IQR 3-5). We extracted data from 21 491 analyses of 20 951 molecules reported by 38 case-control studies. Only one molecule (interleukin-1ß protein) was quantified in three case-control studies (127 ICH cases vs 41 ICH-free controls), which found increased abundance of interleukin-1ß protein after ICH (corrected standardised mean difference 1.74, 95% CI 0.28 to 3.21, p=0.036, I2=46%). Processes associated with interleukin-1ß signalling were enriched in sets of molecules that were more abundant after ICH. CONCLUSION: Interleukin-1ß abundance is increased after ICH, but analyses of other inflammatory molecules after ICH lack replication. Interleukin-1ß pathway modulators may optimise inflammatory responses to ICH and merit testing in clinical trials.


Assuntos
Hemorragia Cerebral/patologia , Inflamação/patologia , Adulto , Biomarcadores , Encéfalo , Estudos de Casos e Controles , Humanos
5.
Int J Mol Sci ; 23(19)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36232696

RESUMO

The NMDA receptor is a Ca2+-permeant glutamate receptor which plays key roles in health and disease. Canonical NMDARs contain two GluN2 subunits, of which 2A and 2B are predominant in the forebrain. Moreover, the relative contribution of 2A vs. 2B is controlled both developmentally and in an activity-dependent manner. The GluN2 subtype influences the biophysical properties of the receptor through difference in their N-terminal extracellular domain and transmembrane regions, but they also have large cytoplasmic Carboxyl (C)-terminal domains (CTDs) which have diverged substantially during evolution. While the CTD identity does not influence NMDAR subunit specific channel properties, it determines the nature of CTD-associated signalling molecules and has been implicated in mediating the control of subunit composition (2A vs. 2B) at the synapse. Historically, much of the research into the differential function of GluN2 CTDs has been conducted in vitro by over-expressing mutant subunits, but more recently, the generation of knock-in (KI) mouse models have allowed CTD function to be probed in vivo and in ex vivo systems without heterologous expression of GluN2 mutants. In some instances, findings involving KI mice have been in disagreement with models that were proposed based on earlier approaches. This review will examine the current research with the aim of addressing these controversies and how methodology may contribute to differences between studies. We will also discuss the outstanding questions regarding the role of GluN2 CTD sequences in regulating NMDAR subunit composition, as well as their relevance to neurodegenerative disease and neurodevelopmental disorders.


Assuntos
Doenças Neurodegenerativas , Transtornos do Neurodesenvolvimento , Receptores de N-Metil-D-Aspartato , Animais , Modelos Animais de Doenças , Crescimento e Desenvolvimento/genética , Crescimento e Desenvolvimento/fisiologia , Camundongos , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/fisiopatologia , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/metabolismo , Transtornos do Neurodesenvolvimento/fisiopatologia , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Transdução de Sinais , Sinapses/genética , Sinapses/metabolismo , Sinapses/fisiologia
6.
Acta Neuropathol ; 141(2): 257-279, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33398403

RESUMO

Axonal dysfunction is a common phenotype in neurodegenerative disorders, including in amyotrophic lateral sclerosis (ALS), where the key pathological cell-type, the motor neuron (MN), has an axon extending up to a metre long. The maintenance of axonal function is a highly energy-demanding process, raising the question of whether MN cellular energetics is perturbed in ALS, and whether its recovery promotes axonal rescue. To address this, we undertook cellular and molecular interrogation of multiple patient-derived induced pluripotent stem cell lines and patient autopsy samples harbouring the most common ALS causing mutation, C9orf72. Using paired mutant and isogenic expansion-corrected controls, we show that C9orf72 MNs have shorter axons, impaired fast axonal transport of mitochondrial cargo, and altered mitochondrial bioenergetic function. RNAseq revealed reduced gene expression of mitochondrially encoded electron transport chain transcripts, with neuropathological analysis of C9orf72-ALS post-mortem tissue importantly confirming selective dysregulation of the mitochondrially encoded transcripts in ventral horn spinal MNs, but not in corresponding dorsal horn sensory neurons, with findings reflected at the protein level. Mitochondrial DNA copy number was unaltered, both in vitro and in human post-mortem tissue. Genetic manipulation of mitochondrial biogenesis in C9orf72 MNs corrected the bioenergetic deficit and also rescued the axonal length and transport phenotypes. Collectively, our data show that loss of mitochondrial function is a key mediator of axonal dysfunction in C9orf72-ALS, and that boosting MN bioenergetics is sufficient to restore axonal homeostasis, opening new potential therapeutic strategies for ALS that target mitochondrial function.


Assuntos
Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Axônios/metabolismo , Proteína C9orf72/genética , Metabolismo Energético/genética , Mitocôndrias/metabolismo , Neurônios Motores/metabolismo , Adulto , Idoso , Esclerose Lateral Amiotrófica/patologia , Transporte de Elétrons/genética , Feminino , Dosagem de Genes , Regulação da Expressão Gênica , Homeostase , Humanos , Células-Tronco Pluripotentes Induzidas , Masculino , Pessoa de Meia-Idade , Células do Corno Posterior/patologia
7.
Nat Rev Neurosci ; 17(2): 125-34, 2016 02.
Artigo em Inglês | MEDLINE | ID: mdl-26763624

RESUMO

Molecular, genetic and pathological evidence suggests that deficits in GABAergic parvalbumin-positive interneurons contribute to schizophrenia pathophysiology through alterations in the brain's excitation-inhibition balance that result in impaired behaviour and cognition. Although the factors that trigger these deficits are diverse, there is increasing evidence that they converge on a common pathological hub that involves NMDA receptor hypofunction and oxidative stress. These factors have been separately linked to schizophrenia pathogenesis, but evidence now suggests that they are mechanistically interdependent and contribute to a common schizophrenia-associated pathology.


Assuntos
Encéfalo/metabolismo , Estresse Oxidativo/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Esquizofrenia/patologia , Esquizofrenia/fisiopatologia , Animais , Encéfalo/patologia , Humanos , Receptores de N-Metil-D-Aspartato/genética , Esquizofrenia/genética
8.
Glia ; 68(5): 1046-1064, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31841614

RESUMO

Mutations in C9orf72 are the most common genetic cause of amyotrophic lateral sclerosis (ALS). Accumulating evidence implicates astrocytes as important non-cell autonomous contributors to ALS pathogenesis, although the potential deleterious effects of astrocytes on the function of motor neurons remains to be determined in a completely humanized model of C9orf72-mediated ALS. Here, we use a human iPSC-based model to study the cell autonomous and non-autonomous consequences of mutant C9orf72 expression by astrocytes. We show that mutant astrocytes both recapitulate key aspects of C9orf72-related ALS pathology and, upon co-culture, cause motor neurons to undergo a progressive loss of action potential output due to decreases in the magnitude of voltage-activated Na+ and K+ currents. Importantly, CRISPR/Cas-9 mediated excision of the C9orf72 repeat expansion reverses these phenotypes, confirming that the C9orf72 mutation is responsible for both cell-autonomous astrocyte pathology and non-cell autonomous motor neuron pathophysiology.


Assuntos
Astrócitos/metabolismo , Proteína C9orf72/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios Motores/metabolismo , Potenciais de Ação/fisiologia , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Astrócitos/patologia , Proteína C9orf72/metabolismo , Técnicas de Cocultura , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Neurônios Motores/patologia , Mutação
9.
J Neuroinflammation ; 17(1): 367, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33261626

RESUMO

BACKGROUND: Chronic cerebral hypoperfusion causes damage to the brain's white matter underpinning vascular cognitive impairment. Inflammation and oxidative stress have been proposed as key pathophysiological mechanisms of which the transcription factor Nrf2 is a master regulator. We hypothesised that white matter pathology, microgliosis, blood-brain barrier breakdown and behavioural deficits induced by chronic hypoperfusion would be exacerbated in mice deficient in the transcription factor Nrf2. METHODS: Mice deficient in Nrf2 (male heterozygote or homozygous for Nrf2 knockout) or wild-type littermates on a C57Bl6/J background underwent bilateral carotid artery stenosis (BCAS) to induce chronic cerebral hypoperfusion or sham surgery and survived for a further 6 weeks. White matter pathology was assessed with MAG immunohistochemistry as a marker of altered axon-glial integrity; alterations to astrocytes and microglia/macrophages were assessed with GFAP and Iba1 immunohistochemistry, and blood-brain barrier breakdown was assessed with IgG immunohistochemistry. Behavioural alterations were assessed using 8-arm radial arm maze, and alterations to Nrf2-related and inflammatory-related genes were assessed with qRT-PCR. RESULTS: Chronic cerebral hypoperfusion induced white matter pathology, elevated microglial/macrophage levels and blood-brain barrier breakdown in white matter tracts that were increased in Nrf2+/- mice and further exacerbated by the complete absence of Nrf2. Chronic hypoperfusion induced white matter astrogliosis and induced an impairment in behaviour assessed with radial arm maze; however, these measures were not affected by Nrf2 deficiency. Although Nrf2-related antioxidant gene expression was not altered by chronic cerebral hypoperfusion, there was evidence for elevated pro-inflammatory related gene expression following chronic hypoperfusion that was not affected by Nrf2 deficiency. CONCLUSIONS: The results demonstrate that the absence of Nrf2 exacerbates white matter pathology and microgliosis following cerebral hypoperfusion but does not affect behavioural impairment.


Assuntos
Encéfalo/patologia , Disfunção Cognitiva/metabolismo , Microglia/patologia , Fator 2 Relacionado a NF-E2/deficiência , Substância Branca/patologia , Animais , Isquemia Encefálica/etiologia , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Estenose das Carótidas/complicações , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/patologia , Modelos Animais de Doenças , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
10.
Mol Psychiatry ; 24(2): 294-311, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30401811

RESUMO

The molecular basis of how chromosome 16p13.11 microduplication leads to major psychiatric disorders is unknown. Here we have undertaken brain imaging of patients carrying microduplications in chromosome 16p13.11 and unaffected family controls, in parallel with iPS cell-derived cerebral organoid studies of the same patients. Patient MRI revealed reduced cortical volume, and corresponding iPSC studies showed neural precursor cell (NPC) proliferation abnormalities and reduced organoid size, with the NPCs therein displaying altered planes of cell division. Transcriptomic analyses of NPCs uncovered a deficit in the NFκB p65 pathway, confirmed by proteomics. Moreover, both pharmacological and genetic correction of this deficit rescued the proliferation abnormality. Thus, chromosome 16p13.11 microduplication disturbs the normal programme of NPC proliferation to reduce cortical thickness due to a correctable deficit in the NFκB signalling pathway. This is the first study demonstrating a biologically relevant, potentially ameliorable, signalling pathway underlying chromosome 16p13.11 microduplication syndrome in patient-derived neuronal precursor cells.


Assuntos
Cromossomos Humanos Par 16/genética , Transtornos Mentais/genética , NF-kappa B/metabolismo , Anormalidades Múltiplas/genética , Adulto , Idoso , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Proliferação de Células , Duplicação Cromossômica/genética , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Deficiência Intelectual/genética , Masculino , Pessoa de Meia-Idade , NF-kappa B/genética , Neuroimagem/métodos , Neurônios , Organoides/fisiologia , Transdução de Sinais , Células-Tronco/fisiologia
11.
Mol Psychiatry ; 24(11): 1641-1654, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31481758

RESUMO

Although the underlying neurobiology of major mental illness (MMI) remains unknown, emerging evidence implicates a role for oligodendrocyte-myelin abnormalities. Here, we took advantage of a large family carrying a balanced t(1;11) translocation, which substantially increases risk of MMI, to undertake both diffusion tensor imaging and cellular studies to evaluate the consequences of the t(1;11) translocation on white matter structural integrity and oligodendrocyte-myelin biology. This translocation disrupts among others the DISC1 gene which plays a crucial role in brain development. We show that translocation-carrying patients display significant disruption of  white matter integrity compared with familial controls. At a cellular level, we observe dysregulation of key pathways controlling oligodendrocyte development and morphogenesis in induced pluripotent stem cell (iPSC) derived case oligodendrocytes. This is associated with reduced proliferation and a stunted morphology in vitro. Further, myelin internodes in a humanized mouse model that recapitulates the human translocation as well as after transplantation of t(1;11) oligodendrocyte progenitors were significantly reduced when  compared with controls. Thus we provide evidence that the t(1;11) translocation has biological effects at both the systems and cellular level that together suggest oligodendrocyte-myelin dysfunction.


Assuntos
Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo , Translocação Genética/genética , Adulto , Animais , Cromossomos Humanos Par 1/genética , Cromossomos Humanos Par 11/genética , Imagem de Tensor de Difusão/métodos , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Transtornos Mentais/genética , Camundongos , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Substância Branca/metabolismo , Substância Branca/fisiologia
12.
Brain ; 142(1): 80-92, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30544257

RESUMO

Alterations of the N-methyl-d-aspartate receptor (NMDAR) subunit GluN2A, encoded by GRIN2A, have been associated with a spectrum of neurodevelopmental disorders with prominent speech-related features, and epilepsy. We performed a comprehensive assessment of phenotypes with a standardized questionnaire in 92 previously unreported individuals with GRIN2A-related disorders. Applying the criteria of the American College of Medical Genetics and Genomics to all published variants yielded 156 additional cases with pathogenic or likely pathogenic variants in GRIN2A, resulting in a total of 248 individuals. The phenotypic spectrum ranged from normal or near-normal development with mild epilepsy and speech delay/apraxia to severe developmental and epileptic encephalopathy, often within the epilepsy-aphasia spectrum. We found that pathogenic missense variants in transmembrane and linker domains (misTMD+Linker) were associated with severe developmental phenotypes, whereas missense variants within amino terminal or ligand-binding domains (misATD+LBD) and null variants led to less severe developmental phenotypes, which we confirmed in a discovery (P = 10-6) as well as validation cohort (P = 0.0003). Other phenotypes such as MRI abnormalities and epilepsy types were also significantly different between the two groups. Notably, this was paralleled by electrophysiology data, where misTMD+Linker predominantly led to NMDAR gain-of-function, while misATD+LBD exclusively caused NMDAR loss-of-function. With respect to null variants, we show that Grin2a+/- cortical rat neurons also had reduced NMDAR function and there was no evidence of previously postulated compensatory overexpression of GluN2B. We demonstrate that null variants and misATD+LBD of GRIN2A do not only share the same clinical spectrum (i.e. milder phenotypes), but also result in similar electrophysiological consequences (loss-of-function) opposing those of misTMD+Linker (severe phenotypes; predominantly gain-of-function). This new pathomechanistic model may ultimately help in predicting phenotype severity as well as eligibility for potential precision medicine approaches in GRIN2A-related disorders.


Assuntos
Epilepsia/genética , Transtornos do Neurodesenvolvimento/genética , Receptores de N-Metil-D-Aspartato/genética , Adolescente , Adulto , Idoso , Animais , Células Cultivadas , Córtex Cerebelar/metabolismo , Criança , Pré-Escolar , Epilepsia/fisiopatologia , Feminino , Genótipo , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Mutação , Transtornos do Neurodesenvolvimento/fisiopatologia , Fenótipo , Ratos , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de N-Metil-D-Aspartato/fisiologia , Adulto Jovem
13.
Int J Mol Sci ; 21(24)2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33348528

RESUMO

The astrocytic glutamate transporters excitatory amino acid transporters 1 and 2 (EAAT1 and EAAT2) play a key role in nervous system function to maintain extracellular glutamate levels at low levels. In physiology, this is essential for the rapid uptake of synaptically released glutamate, maintaining the temporal fidelity of synaptic transmission. However, EAAT1/2 hypo-expression or hypo-function are implicated in several disorders, including epilepsy and neurodegenerative diseases, as well as being observed naturally with aging. This not only disrupts synaptic information transmission, but in extremis leads to extracellular glutamate accumulation and excitotoxicity. A key facet of EAAT1/2 expression in astrocytes is a requirement for signals from other brain cell types in order to maintain their expression. Recent evidence has shown a prominent role for contact-dependent neuron-to-astrocyte and/or endothelial cell-to-astrocyte Notch signalling for inducing and maintaining the expression of these astrocytic glutamate transporters. The relevance of this non-cell-autonomous dependence to age- and neurodegenerative disease-associated decline in astrocytic EAAT expression is discussed, plus the implications for disease progression and putative therapeutic strategies.


Assuntos
Envelhecimento/metabolismo , Astrócitos/metabolismo , Transportador 1 de Aminoácido Excitatório/metabolismo , Transportador 2 de Aminoácido Excitatório/metabolismo , Ácido Glutâmico/metabolismo , Animais , Transporte Biológico , Humanos , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais
14.
Int J Mol Sci ; 21(6)2020 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-32178355

RESUMO

Forebrain neurons have relatively weak intrinsic antioxidant defenses compared to astrocytes, in part due to hypo-expression of Nrf2, an oxidative stress-induced master regulator of antioxidant and detoxification genes. Nevertheless, neurons do possess the capacity to auto-regulate their antioxidant defenses in response to electrical activity. Activity-dependent Ca2+ signals control the expression of several antioxidant genes, boosting redox buffering capacity, thus meeting the elevated antioxidant requirements associated with metabolically expensive electrical activity. These genes include examples which are reported Nrf2 target genes and yet are induced in a Nrf2-independent manner. Here we discuss the implications for Nrf2 hypofunction in neurons and the mechanisms underlying the Nrf2-independent induction of antioxidant genes by electrical activity. A significant proportion of Nrf2 target genes, defined as those genes controlled by Nrf2 in astrocytes, are regulated by activity-dependent Ca2+ signals in human stem cell-derived neurons. We propose that neurons interpret Ca2+ signals in a similar way to other cell types sense redox imbalance, to broadly induce antioxidant and detoxification genes.


Assuntos
Antioxidantes/metabolismo , Neurônios/metabolismo , Neurônios/fisiologia , Animais , Sinalização do Cálcio/genética , Humanos , Fator 2 Relacionado a NF-E2/genética , Oxirredução , Transdução de Sinais/genética
15.
J Physiol ; 597(6): 1691-1704, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30604514

RESUMO

KEY POINTS: NMDA receptors are neurotransmitter-gated ion channels that are critically involved in brain cell communication Variations in genes encoding NMDA receptor subunits have been found in a range of neurodevelopmental disorders. We investigated a de novo genetic variant found in patients with epileptic encephalopathy that changes a residue located in the ion channel pore of the GluN2A NMDA receptor subunit. We found that this variant (GluN2AN615K ) impairs physiologically important receptor properties: it markedly reduces Mg2+ blockade and channel conductance, even for receptors in which one GluN2AN615K is co-assembled with one wild-type GluN2A subunit. Our findings are consistent with the GluN2AN615K mutation being the primary cause of the severe neurodevelopmental disorder in carriers. ABSTRACT: NMDA receptors are ionotropic calcium-permeable glutamate receptors with a voltage-dependence mediated by blockade by Mg2+ . Their activation is important in signal transduction, as well as synapse formation and maintenance. Two unrelated individuals with epileptic encephalopathy carry a de novo variant in the gene encoding the GluN2A NMDA receptor subunit: a N615K missense variant in the M2 pore helix (GRIN2AC1845A ). We hypothesized that this variant underlies the neurodevelopmental disorders in carriers and explored its functional consequences by electrophysiological analysis in heterologous systems. We focused on GluN2AN615K co-expressed with wild-type GluN2 subunits in physiologically relevant triheteromeric NMDA receptors containing two GluN1 and two distinct GluN2 subunits, whereas previous studies have investigated the impact of the variant in diheteromeric NMDA receptors with two GluN1 and two identical GluN2 subunits. We found that GluN2AN615K -containing triheteromers showed markedly reduced Mg2+ blockade, with a value intermediate between GluN2AN615K diheteromers and wild-type NMDA receptors. Single-channel conductance was reduced by four-fold in GluN2AN615K diheteromers, again with an intermediate value in GluN2AN615K -containing triheteromers. Glutamate deactivation rates were unaffected. Furthermore, we expressed GluN2AN615K in cultured primary mouse cortical neurons, observing a decrease in Mg2+ blockade and reduction in current density, confirming that the variant continues to have significant functional impact in neuronal systems. Our results demonstrate that the GluN2AN615K variant has substantial effects on NMDA receptor properties fundamental to the roles of the receptor in synaptic plasticity, even when expressed alongside wild-type subunits. This work strengthens the evidence indicating that the GluN2AN615K variant underlies the disabling neurodevelopmental phenotype in carriers.


Assuntos
Potenciais de Ação , Epilepsia/genética , Mutação de Sentido Incorreto , Receptores de N-Metil-D-Aspartato/genética , Animais , Células Cultivadas , Feminino , Células HEK293 , Humanos , Magnésio/metabolismo , Masculino , Camundongos , Neurônios/metabolismo , Neurônios/fisiologia , Multimerização Proteica , Receptores de N-Metil-D-Aspartato/metabolismo
16.
Biochem Soc Trans ; 45(6): 1295-1303, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29150527

RESUMO

Diverse neurodegenerative diseases share some common aspects to their pathology, with many showing evidence of disruption to the brain's numerous homeostatic processes. As such, imbalanced inflammatory status, glutamate dyshomeostasis, hypometabolism and oxidative stress are implicated in many disorders. That these pathological processes can influence each other both up- and downstream makes for a complicated picture, but means that successfully targeting one area may have an effect on others. This targeting requires an understanding of the mechanisms by which homeostasis is maintained during health, in order to uncover strategies to boost homeostasis in disease. A case in point is redox homeostasis, maintained by antioxidant defences co-ordinately regulated by the transcription factor Nrf2, and capable of preventing not only oxidative stress but also inflammation and neuronal loss in neurodegenerative disease models. The emergence of other master regulators of homeostatic processes in the brain controlling inflammation, mitochondrial biogenesis, glutamate uptake and energy metabolism raises the question as to whether they too can be targeted to alter disease trajectory.


Assuntos
Homeostase , Doenças Neurodegenerativas/metabolismo , Fatores de Transcrição/metabolismo , Doença de Alzheimer/metabolismo , Animais , Humanos , Fator 2 Relacionado a NF-E2/metabolismo , Oxirredução , Estresse Oxidativo
17.
Stem Cells ; 34(4): 1040-53, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26763608

RESUMO

Rodent-based studies have shown that the membrane properties of oligodendrocytes play prominent roles in their physiology and shift markedly during their maturation from the oligodendrocyte precursor cell (OPC) stage. However, the conservation of these properties and maturation processes in human oligodendrocytes remains unknown, despite their dysfunction being implicated in human neurodegenerative diseases such as multiple sclerosis (MS) and amyotrophic lateral sclerosis (ALS). Here, we have defined the membrane properties of human oligodendrocytes derived from pluripotent stem cells as they mature from the OPC stage, and have identified strong conservation of maturation-specific physiological characteristics reported in rodent systems. We find that as human oligodendrocytes develop and express maturation markers, they exhibit a progressive decrease in voltage-gated sodium and potassium channels and a loss of tetrodotoxin-sensitive spiking activity. Concomitant with this is an increase in inwardly rectifying potassium channel activity, as well as a characteristic switch in AMPA receptor composition. All these steps mirror the developmental trajectory observed in rodent systems. Oligodendrocytes derived from mutant C9ORF72-carryng ALS patient induced pluripotent stem cells did not exhibit impairment to maturation and maintain viability with respect to control lines despite the presence of RNA foci, suggesting that maturation defects may not be a primary feature of this mutation. Thus, we have established that the development of human oligodendroglia membrane properties closely resemble those found in rodent cells and have generated a platform to enable the impact of human neurodegenerative disease-causing mutations on oligodendrocyte maturation to be studied.


Assuntos
Esclerose Lateral Amiotrófica/fisiopatologia , Diferenciação Celular/genética , Esclerose Múltipla/fisiopatologia , Oligodendroglia/fisiologia , Células-Tronco Pluripotentes/fisiologia , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Animais , Fenômenos Eletrofisiológicos , Feminino , Humanos , Masculino , Esclerose Múltipla/genética , Mutação , Neurogênese/genética , Neurogênese/fisiologia , Oligodendroglia/patologia , Células-Tronco Pluripotentes/patologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Canais de Sódio Disparados por Voltagem/genética
18.
Org Biomol Chem ; 15(9): 2086-2096, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28210722

RESUMO

We report the synthesis of terminally fluorinated HU-210 and HU-211 analogues (HU-210F and HU-211F, respectively) and their biological evaluation as ligands of cannabinoid receptors (CB1 and CB2) and N-methyl d-aspartate receptor (NMDAR). [18F]-labelled HU-210F was radiosynthesised from the bromo-substituted precursor. In vitro assays showed that both HU-210F and HU-211F retain the potent pharmacological profile of HU-210 and HU-211, suggesting that [18F]-radiolabelled HU-210F and HU-211F could have potential as PET tracers for in vivo imaging.

19.
J Physiol ; 594(22): 6573-6582, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-26608229

RESUMO

The in vitro derivation of regionally defined human neuron types from patient-derived stem cells is now established as a resource to investigate human development and disease. Characterization of such neurons initially focused on the expression of developmentally regulated transcription factors and neural markers, in conjunction with the development of protocols to direct and chart the fate of differentiated neurons. However, crucial to the understanding and exploitation of this technology is to determine the degree to which neurons recapitulate the key functional features exhibited by their native counterparts, essential for determining their usefulness in modelling human physiology and disease in vitro. Here, we review the emerging data concerning functional properties of human pluripotent stem cell-derived excitatory cortical neurons, in the context of both maturation and regional specificity.


Assuntos
Potenciais de Ação/fisiologia , Células-Tronco Pluripotentes/fisiologia , Animais , Diferenciação Celular/fisiologia , Humanos , Neurônios , Células-Tronco Pluripotentes/metabolismo , Fatores de Transcrição/metabolismo
20.
Biochim Biophys Acta ; 1853(9): 2066-76, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25541281

RESUMO

Neurodegenerative and neurological disorders are often characterised by pathological changes to dendrites, in advance of neuronal death. Oxidative stress, energy deficits and excitotoxicity are implicated in many such disorders, suggesting a potential vulnerability of dendrites to these situations. Here we have studied dendritic vs. somatic responses of primary cortical neurons to these types of challenges in real-time. Using a genetically encoded indicator of intracellular redox potential (Grx1-roGFP2) we found that, compared to the soma, dendritic regions exhibited more dramatic fluctuations in redox potential in response to sub-lethal ROS exposure, and existed in a basally more oxidised state. We also studied the responses of dendritic and somatic regions to excitotoxic NMDA receptor activity. Both dendritic and somatic regions experienced similar increases in cytoplasmic Ca²âº. Interestingly, while mitochondrial Ca²âº uptake and initial mitochondrial depolarisation were similar in both regions, secondary delayed mitochondrial depolarisation was far weaker in dendrites, potentially as a result of less NADH depletion. Despite this, ATP levels were found to fall faster in dendritic regions. Finally we studied the responses of dendritic and somatic regions to energetically demanding action potential burst activity. Burst activity triggered PDH dephosphorylation, increases in oxygen consumption and cellular NADH:NAD ratio. Compared to somatic regions, dendritic regions exhibited a smaller degree of mitochondrial Ca²âº uptake, lower fold-induction of NADH and larger reduction in ATP levels. Collectively, these data reveal that dendritic regions of primary neurons are vulnerable to greater energetic and redox fluctuations than the cell body, which may contribute to disease-associated dendritic damage. This article is part of a Special Issue entitled: 13th European Symposium on Calcium.


Assuntos
Cálcio/metabolismo , Córtex Cerebral/metabolismo , Dendritos/metabolismo , Potencial da Membrana Mitocondrial/fisiologia , Estresse Oxidativo/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Células Cultivadas , Córtex Cerebral/citologia , Camundongos , NAD/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA