Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Pharm ; 21(3): 1479-1489, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38373877

RESUMO

In a competitive coformer exchange reaction, a recent topic of interest in pharmaceutical research, the coformer in a pharmaceutical cocrystal is exchanged with another coformer that is expected to form a cocrystal that is more stable. There will be a competition between coformers to form the most stable product through the formation of hydrogen bonds. This will cause destabilization of the pharmaceutical products during processing or storage. Therefore, it is important to develop a mechanistic understanding of this transformation by monitoring each and every step of the reaction, employing a technique such as 1H nuclear magnetic resonance (NMR). In this study, an in situ monitoring of a coformer exchange reaction is carried out by 1H magic angle spinning (MAS) solid-state NMR (SSNMR) at a spinning frequency of 60 kHz. The changes in caffeine maleic acid cocrystals on addition of glutaric acid and caffeine glutaric cocrystals on addition of maleic acid were monitored. In all of the reactions, it has been observed that caffeine glutaric acid Form I is formed. When glutaric acid was added to 2:1 caffeine maleic acid, the formation of metastable 1:1 caffeine glutaric acid Form I was observed at the start of the experiment, indicating that the centrifugal pressure is enough for the formation. The difference in the end product of the reactions with a similar reaction pathway of 1:1 and 2:1 reactant stoichiometry indicates that a complete replacement of maleic acid has occurred only in the 1:1 stoichiometry of the reactants. The polymorphic transition of caffeine glutaric acid Form II to Form I at higher temperatures was a crucial reason that triggered the exchange of glutaric acid with maleic acid in the reaction of caffeine glutaric acid and maleic acid. Our results are novel since the new reaction pathways in competitive coformer exchange reactions enabled understanding the remarkable role of stoichiometry, polymorphism, temperature, and centrifugal pressure.


Assuntos
Cafeína , Glutaratos , Maleatos , Cafeína/química , Espectroscopia de Ressonância Magnética
2.
Mol Pharm ; 21(3): 1390-1401, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38329458

RESUMO

Sucralfate, which is a sucrose octasulfate aluminum complex, is an active pharmaceutical ingredient (API) falling in the category of cytoprotective agents which are very effective for gastric and duodenal ulcers. On interaction with stomach acid, it ionizes into aluminum and sucrose octasulfate ions to form a protective layer over the ulcerated region inhibiting further attack from acid. The mechanism of action of sucralfate in the context of its structure is not well understood. Considering that at least two forms of this API are available in the market, there are no reports on the various forms of sucralfate and differences in their pharmacological action. We characterized the two forms of sucralfate using multinuclear, multidimensional solid-state NMR, and the results show significant structural differences between them arising from variation in the aluminum environment and the level of hydration. The impact of structural differences on pharmacological action was examined by studying acid-induced Al release by 27Al liquid-state NMR. The sucralfate, European pharmaceutical standard, Form I, undergoes faster disruption in acid compared to Form II. The difference is explained on the basis of structural differences in the two forms which gives significant insights into the action of sucralfate in relation to its structure.


Assuntos
Antiulcerosos , Úlcera Duodenal , Humanos , Sucralfato/uso terapêutico , Sucralfato/química , Sucralfato/farmacologia , Alumínio/farmacologia , Úlcera Duodenal/tratamento farmacológico , Espectroscopia de Ressonância Magnética , Imageamento por Ressonância Magnética , Antiulcerosos/uso terapêutico
3.
Phys Chem Chem Phys ; 26(5): 3800-3803, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38240042

RESUMO

Pharmaceutical eutectics are extremely useful for designing formulations, and currently, there are no techniques other than differential scanning calorimetry (DSC) that can confirm their formation. In this study, we demonstrate that 1H fast magic angle spinning (MAS) solid-state NMR (SSNMR) experiments can confirm the formation of eutectics by detecting their intermolecular hydrogen bonding interactions.


Assuntos
Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética/métodos , Composição de Medicamentos , Preparações Farmacêuticas
5.
RSC Adv ; 8(26): 14422-14433, 2018 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-35540738

RESUMO

Understanding the conductivity variations induced by compositional changes in sodium super ionic conducting (NASICON) glass materials is highly relevant for applications such as solid electrolytes for sodium (Na) ion batteries. In the research reported in this paper, NASICON-based NCAP glass (Na2.8Ca0.1Al2P3O12) was selected as the parent glass. The present study demonstrates the changes in the Na+ ion conductivity of NCAP bulk glass with the substitution of boron (NCABP: Na2.8Ca0.1Al2B0.5P2.7O12) and gallium (NCAGP: Na2.8Ca0.1Al2Ga0.5P2.7O12) for phosphorus and the resulting structural variations found in the glass network. For a detailed structural analysis of NCAP, NCABP and NCAGP glasses, micro-Raman and magic angle spinning-nuclear magnetic resonance (MAS-NMR) spectroscopic techniques (for 31P, 27Al, 23Na, 11B and 71Ga nuclei) were used. The Raman spectrum revealed that the NCAP glass structure is more analogous to the AlPO4 mesoporous glass structure. The 31P MAS-NMR spectrum illustrated that the NCAP glass structure consists of a high concentration of Q0 (3Al) units, followed by Q0 (2Al) units. The 27Al MAS-NMR spectrum indicates that alumina exists at five different sites, which include AlO4 units surrounded by AlO6 units, Al(OP)4, Al(OP)5, Al(OAl)6 and Al(OP)6, in the NCAP glass structure. The 31P, 27Al and 11B MAS-NMR spectra of the NCABP glass revealed the absence of B-O-Al linkages and the presence of B3-O-B4-O-P4 linkages which further leads to the formation of borate and borophosphate domains. The 71Ga MAS-NMR spectrum suggests that gallium cations in the NCAGP glass compete with the alumina cations and occupy four (GaO4), five (GaO5) and six (GaO6) coordinated sites. The Raman spectrum of NCAGP glass indicates that sodium cations have also been substituted by gallium cations in the NCAP glass structure. From impedance analysis, the dc conductivity of the NCAP glass (∼3.13 × 10-8 S cm-1) is slightly decreased with the substitution of gallium (∼2.27 × 10-8 S cm-1) but considerably decreased with the substitution of boron (∼1.46 × 10-8 S cm-1). The variation in the conductivity values are described based on the structural changes of NCAP glass with the substitution of gallium and boron.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA