Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Cell ; 187(13): 3390-3408.e19, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38754421

RESUMO

Clinical trials have identified ARID1A mutations as enriched among patients who respond favorably to immune checkpoint blockade (ICB) in several solid tumor types independent of microsatellite instability. We show that ARID1A loss in murine models is sufficient to induce anti-tumor immune phenotypes observed in ARID1A mutant human cancers, including increased CD8+ T cell infiltration and cytolytic activity. ARID1A-deficient cancers upregulated an interferon (IFN) gene expression signature, the ARID1A-IFN signature, associated with increased R-loops and cytosolic single-stranded DNA (ssDNA). Overexpression of the R-loop resolving enzyme, RNASEH2B, or cytosolic DNase, TREX1, in ARID1A-deficient cells prevented cytosolic ssDNA accumulation and ARID1A-IFN gene upregulation. Further, the ARID1A-IFN signature and anti-tumor immunity were driven by STING-dependent type I IFN signaling, which was required for improved responsiveness of ARID1A mutant tumors to ICB treatment. These findings define a molecular mechanism underlying anti-tumor immunity in ARID1A mutant cancers.


Assuntos
Linfócitos T CD8-Positivos , Proteínas de Ligação a DNA , Interferon Tipo I , Proteínas de Membrana , Neoplasias , Transdução de Sinais , Fatores de Transcrição , Animais , Humanos , Camundongos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/metabolismo , Exodesoxirribonucleases/metabolismo , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Interferon Tipo I/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Mutação , Neoplasias/imunologia , Neoplasias/genética , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Fatores de Transcrição/metabolismo , Masculino , Quimiocinas/genética , Quimiocinas/metabolismo
2.
Immunity ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38843835

RESUMO

Macrophages elicit immune responses to pathogens through induction of inflammatory genes. Here, we examined the role of three variants of the SWI/SNF nucleosome remodeling complex-cBAF, ncBAF, and PBAF-in the macrophage response to bacterial endotoxin (lipid A). All three SWI/SNF variants were prebound in macrophages and retargeted to genomic sites undergoing changes in chromatin accessibility following stimulation. Cooperative binding of all three variants associated with de novo chromatin opening and latent enhancer activation. Isolated binding of ncBAF and PBAF, in contrast, associated with activation and repression of active enhancers, respectively. Chemical and genetic perturbations of variant-specific subunits revealed pathway-specific regulation in the activation of lipid A response genes, corresponding to requirement for cBAF and ncBAF in inflammatory and interferon-stimulated gene (ISG) activation, respectively, consistent with differential engagement of SWI/SNF variants by signal-responsive transcription factors. Thus, functional diversity among SWI/SNF variants enables increased regulatory control of innate immune transcriptional programs, with potential for specific therapeutic targeting.

3.
Immunity ; 56(6): 1303-1319.e5, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37315534

RESUMO

CD8+ T cells provide host protection against pathogens by differentiating into distinct effector and memory cell subsets, but how chromatin is site-specifically remodeled during their differentiation is unclear. Due to its critical role in regulating chromatin and enhancer accessibility through its nucleosome remodeling activities, we investigated the role of the canonical BAF (cBAF) chromatin remodeling complex in antiviral CD8+ T cells during infection. ARID1A, a subunit of cBAF, was recruited early after activation and established de novo open chromatin regions (OCRs) at enhancers. Arid1a deficiency impaired the opening of thousands of activation-induced enhancers, leading to loss of TF binding, dysregulated proliferation and gene expression, and failure to undergo terminal effector differentiation. Although Arid1a was dispensable for circulating memory cell formation, tissue-resident memory (Trm) formation was strongly impaired. Thus, cBAF governs the enhancer landscape of activated CD8+ T cells that orchestrates TF recruitment and activity and the acquisition of specific effector and memory differentiation states.


Assuntos
Linfócitos T CD8-Positivos , Sequências Reguladoras de Ácido Nucleico , Cromatina , Nucleossomos , Antivirais
5.
Immunity ; 53(1): 143-157.e8, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32640256

RESUMO

Regulatory T (Treg) cells play a pivotal role in suppressing auto-reactive T cells and maintaining immune homeostasis. Treg cell development and function are dependent on the transcription factor Foxp3. Here, we performed a genome-wide CRISPR loss-of-function screen to identify Foxp3 regulators in mouse primary Treg cells. Foxp3 regulators were enriched in genes encoding subunits of the SWI/SNF nucleosome-remodeling and SAGA chromatin-modifying complexes. Among the three SWI/SNF-related complexes, the Brd9-containing non-canonical (nc) BAF complex promoted Foxp3 expression, whereas the PBAF complex was repressive. Chemical-induced degradation of Brd9 led to reduced Foxp3 expression and reduced Treg cell function in vitro. Brd9 ablation compromised Treg cell function in inflammatory disease and tumor immunity in vivo. Furthermore, Brd9 promoted Foxp3 binding and expression of a subset of Foxp3 target genes. Our findings provide an unbiased analysis of the genetic networks regulating Foxp3 and reveal ncBAF as a target for therapeutic manipulation of Treg cell function.


Assuntos
Sistemas CRISPR-Cas/genética , Fatores de Transcrição Forkhead/metabolismo , Neoplasias/imunologia , Linfócitos T Reguladores/metabolismo , Fatores de Transcrição/metabolismo , Animais , Autoimunidade/imunologia , Linhagem Celular Tumoral , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Modelos Animais de Doenças , Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica/genética , Células HEK293 , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nucleossomos/imunologia , RNA Guia de Cinetoplastídeos/genética , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/imunologia , Fatores de Transcrição/genética
6.
Genes Dev ; 34(21-22): 1407-1409, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-33872194

RESUMO

Alternative polarization of macrophages induced by IL-4 is important for homeostasis and tissue repair. Downstream from IL-4 receptor signaling, STAT6 activation is transient, but induces stable transcriptional changes. These data suggest that STAT6 induces second messengers to carry out the alternative transcriptional program. In this issue of Genes & Development, Daniel and colleagues (pp. 1474-1492) identify EGR2 as a downstream regulator of STAT6 with broad functionality that further induces many transcription factors associated with alternative polarization. Identification of high EGR2 expression in a subset of mouse and human alveolar macrophages further highlights EGR2 as a conserved marker of alternatively activated macrophages.


Assuntos
Ativação de Macrófagos , Macrófagos , Animais , Proteína 2 de Resposta de Crescimento Precoce , Camundongos , Fator de Transcrição STAT6 , Transdução de Sinais
7.
Immunity ; 49(4): 577-579, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30332621

RESUMO

In this issue of Immunity, Daniel et al. (2018a) demonstrate that the nuclear receptor PPARγ acts in a ligand-insensitive manner to impart transcriptional memory and enhanced functionality to IL-4 polarized macrophages. Their findings shed light on the mechanisms that control priming of the epigenome in response to inflammatory signals.


Assuntos
Epigenômica , PPAR gama , Ligantes , Macrófagos/imunologia
8.
Mol Cell ; 75(5): 891-904.e7, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31375262

RESUMO

Mammalian SWI/SNF complexes are multi-subunit chromatin remodeling complexes associated with an ATPase (either SMARCA4 or SMARCA2). Heterozygous mutations in the SMARCA2 ATPase cause Nicolaides-Baraitser syndrome (NCBRS), an intellectual disability syndrome associated with delayed speech onset. We engineered human embryonic stem cells (hESCs) to carry NCBRS-associated heterozygous SMARCA2 K755R or R1159Q mutations. While SMARCA2 mutant hESCs were phenotypically normal, differentiation to neural progenitors cells (NPCs) was severely impaired. We find that SMARCA2 mutations cause enhancer reorganization with loss of SOX3-dependent neural enhancers and prominent emergence of astrocyte-specific de novo enhancers. Changes in chromatin accessibility at enhancers were associated with an increase in SMARCA2 binding and retargeting of SMARCA4. We show that the AP-1 family member FRA2 is aberrantly overexpressed in SMARCA2 mutant NPCs, where it functions as a pioneer factor at de novo enhancers. Together, our results demonstrate that SMARCA2 mutations cause impaired differentiation through enhancer reprogramming via inappropriate targeting of SMARCA4.


Assuntos
DNA Helicases/metabolismo , Elementos Facilitadores Genéticos , Heterozigoto , Células-Tronco Embrionárias Humanas/metabolismo , Mutação de Sentido Incorreto , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Substituição de Aminoácidos , Diferenciação Celular/genética , Cromatina/genética , Cromatina/metabolismo , DNA Helicases/genética , Fácies , Deformidades Congênitas do Pé/genética , Deformidades Congênitas do Pé/metabolismo , Deformidades Congênitas do Pé/patologia , Antígeno 2 Relacionado a Fos/biossíntese , Antígeno 2 Relacionado a Fos/genética , Células HEK293 , Células-Tronco Embrionárias Humanas/patologia , Humanos , Hipotricose/genética , Hipotricose/metabolismo , Hipotricose/patologia , Deficiência Intelectual/genética , Deficiência Intelectual/metabolismo , Deficiência Intelectual/patologia , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Proteínas Nucleares/genética , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Fatores de Transcrição/genética
9.
Nature ; 582(7812): 416-420, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32499641

RESUMO

Regulatory T (Treg) cells are required to control immune responses and maintain homeostasis, but are a significant barrier to antitumour immunity1. Conversely, Treg instability, characterized by loss of the master transcription factor Foxp3 and acquisition of proinflammatory properties2, can promote autoimmunity and/or facilitate more effective tumour immunity3,4. A comprehensive understanding of the pathways that regulate Foxp3 could lead to more effective Treg therapies for autoimmune disease and cancer. The availability of new functional genetic tools has enabled the possibility of systematic dissection of the gene regulatory programs that modulate Foxp3 expression. Here we developed a CRISPR-based pooled screening platform for phenotypes in primary mouse Treg cells and applied this technology to perform a targeted loss-of-function screen of around 500 nuclear factors to identify gene regulatory programs that promote or disrupt Foxp3 expression. We identified several modulators of Foxp3 expression, including ubiquitin-specific peptidase 22 (Usp22) and ring finger protein 20 (Rnf20). Usp22, a member of the deubiquitination module of the SAGA chromatin-modifying complex, was revealed to be a positive regulator that stabilized Foxp3 expression; whereas the screen suggested that Rnf20, an E3 ubiquitin ligase, can serve as a negative regulator of Foxp3. Treg-specific ablation of Usp22 in mice reduced Foxp3 protein levels and caused defects in their suppressive function that led to spontaneous autoimmunity but protected against tumour growth in multiple cancer models. Foxp3 destabilization in Usp22-deficient Treg cells could be rescued by ablation of Rnf20, revealing a reciprocal ubiquitin switch in Treg cells. These results reveal previously unknown modulators of Foxp3 and demonstrate a screening method that can be broadly applied to discover new targets for Treg immunotherapies for cancer and autoimmune disease.


Assuntos
Sistemas CRISPR-Cas , Fatores de Transcrição Forkhead/metabolismo , Linfócitos T Reguladores/metabolismo , Animais , Autoimunidade/imunologia , Células Cultivadas , Fatores de Transcrição Forkhead/biossíntese , Edição de Genes , Regulação da Expressão Gênica , Humanos , Imunoterapia , Masculino , Camundongos , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/prevenção & controle , Estabilidade Proteica , Reprodutibilidade dos Testes , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/imunologia , Ubiquitina Tiolesterase/deficiência , Ubiquitina Tiolesterase/metabolismo , Ubiquitina-Proteína Ligases/deficiência , Ubiquitina-Proteína Ligases/metabolismo
10.
Trends Immunol ; 43(4): 265-267, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35283014

RESUMO

Blacher and colleagues have discovered that the circadian patterns of macrophage gene expression and immune function that exist in young mice are disrupted in aging mice. KLF4 was identified as a key transcription factor (TF) regulating rhythmic expression of immune genes, which is lost in old macrophages.


Assuntos
Envelhecimento , Ritmo Circadiano , Macrófagos , Animais , Regulação da Expressão Gênica , Fator 4 Semelhante a Kruppel , Macrófagos/citologia , Camundongos , Fatores de Transcrição/genética
11.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34983841

RESUMO

Macrophages induce a number of inflammatory response genes in response to stimulation with microbial ligands. In response to endotoxin Lipid A, a gene-activation cascade of primary followed by secondary-response genes is induced. Epigenetic state is an important regulator of the kinetics, specificity, and mechanism of gene activation of these two classes. In particular, SWI/SNF chromatin-remodeling complexes are required for the induction of secondary-response genes, but not primary-response genes, which generally exhibit open chromatin. Here, we show that a recently discovered variant of the SWI/SNF complex, the noncanonical BAF complex (ncBAF), regulates secondary-response genes in the interferon (IFN) response pathway. Inhibition of bromodomain-containing protein 9 (BRD9), a subunit of the ncBAF complex, with BRD9 bromodomain inhibitors (BRD9i) or a degrader (dBRD9) led to reduction in a number of interferon-stimulated genes (ISGs) following stimulation with endotoxin lipid A. BRD9-dependent genes overlapped highly with a subset of genes differentially regulated by BET protein inhibition with JQ1 following endotoxin stimulation. We find that the BET protein BRD4 is cobound with BRD9 in unstimulated macrophages and corecruited upon stimulation to ISG promoters along with STAT1, STAT2, and IRF9, components of the ISGF3 complex activated downstream of IFN-alpha receptor stimulation. In the presence of BRD9i or dBRD9, STAT1-, STAT2-, and IRF9-binding is reduced, in some cases with reduced binding of BRD4. These results demonstrate a specific role for BRD9 and the ncBAF complex in ISG activation and identify an activity for BRD9 inhibitors and degraders in dampening endotoxin- and IFN-dependent gene expression.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Interferons/metabolismo , Ativação de Macrófagos/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Antivirais/farmacologia , Proteínas de Ciclo Celular/genética , Montagem e Desmontagem da Cromatina/efeitos dos fármacos , Humanos , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/metabolismo , Interferon-alfa/farmacologia , Interferons/genética , Interferons/farmacologia , Regiões Promotoras Genéticas/efeitos dos fármacos , Domínios Proteicos , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT2/metabolismo , Fatores de Transcrição/genética , Ativação Transcricional/efeitos dos fármacos
12.
Cell ; 138(1): 129-45, 2009 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-19596240

RESUMO

Most inducible transcriptional programs consist of primary and secondary response genes (PRGs and SRGs) that differ in their kinetics of expression and in their requirements for new protein synthesis and chromatin remodeling. Here we show that many PRGs, in contrast to SRGs, have preassembled RNA polymerase II (Pol II) and positive histone modifications at their promoters in the basal state. Pol II at PRGs generates low levels of full-length unspliced transcripts but fails to make mature, protein-coding transcripts in the absence of stimulation. Induction of PRGs is controlled at the level of transcriptional elongation and mRNA processing, through the signal-dependent recruitment of P-TEFb. P-TEFb is in turn recruited by the bromodomain-containing protein Brd4, which detects H4K5/8/12Ac inducibly acquired at PRG promoters. Our findings suggest that the permissive structure of PRGs both stipulates their unique regulation in the basal state by corepressor complexes and enables their rapid induction in multiple cell types.


Assuntos
Montagem e Desmontagem da Cromatina , Sequências Reguladoras de Ácido Nucleico , Ativação Transcricional , Animais , Linhagem Celular , Código das Histonas , Histonas/metabolismo , Humanos , Lipopolissacarídeos/imunologia , Lipopolissacarídeos/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Estrutura Terciária de Proteína , RNA Polimerase II/química , RNA Polimerase II/metabolismo
13.
Trends Immunol ; 41(2): 126-140, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31928914

RESUMO

Epigenetic regulation plays an important role in controlling the activation, timing, and resolution of innate immune responses in macrophages. Previously, SWI/SNF chromatin remodeling was found to define the kinetics and selectivity of gene activation in response to microbial ligands; however, these studies do not reflect a comprehensive understanding of SWI/SNF complex regulation. In 2018, a new variant of the SWI/SNF complex was identified with unknown function in inflammatory gene regulation. Here, we summarize the biochemical and genomic properties of SWI/SNF complex variants and the potential for increased regulatory control of innate immune transcriptional programs in light of such biochemical diversity. Finally, we review the development of SWI/SNF complex chemical inhibitors and degraders that could be used to modulate immune responses.


Assuntos
Montagem e Desmontagem da Cromatina , Proteínas Cromossômicas não Histona , Macrófagos , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Epigênese Genética , Humanos , Macrófagos/imunologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
14.
Yale J Biol Med ; 96(4): 467-473, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38161581

RESUMO

T cells undergo extensive chromatin remodeling over several days following stimulation through the T cell receptor. However, the kinetics and gene loci targeted by early remodeling events within the first 24 hours of T cell priming to orchestrate effector differentiation have not been well described. We identified that chromatin accessibility is rapidly and extensively remodeled within 1 hour of stimulation of naïve CD8+ T cells, leading to increased global chromatin accessibility at many effector T cell-associated genes that are enriched for AP-1, early growth response (EGR), and nuclear factor of activated T cells (NFAT) binding sites, but this short duration of stimulation is insufficient for commitment to clonal expansion in vivo. Sustained 24-hour stimulation led to further chromatin remodeling and was sufficient to enable clonal expansion. These data suggest that the duration of antigen receptor signaling is intimately coupled to chromatin remodeling and activation of genes involved in effector cell differentiation and highlight a potential mechanism that helps CD8+ T cells discriminate between foreign- and self-antigens.


Assuntos
Linfócitos T CD8-Positivos , Montagem e Desmontagem da Cromatina , Humanos , Linfócitos T CD8-Positivos/metabolismo , Diferenciação Celular , Transdução de Sinais , Cromatina/metabolismo
15.
Nature ; 497(7451): 624-7, 2013 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-23698369

RESUMO

Recent exon-sequencing studies of human tumours have revealed that subunits of BAF (mammalian SWI/SNF) complexes are mutated in more than 20% of all human malignancies, but the mechanisms involved in tumour suppression are unclear. BAF chromatin-remodelling complexes are polymorphic assemblies that use energy provided by ATP hydrolysis to regulate transcription through the control of chromatin structure and the placement of Polycomb repressive complex 2 (PRC2) across the genome. Several proteins dedicated to this multisubunit complex, including BRG1 (also known as SMARCA4) and BAF250a (also known as ARID1A), are mutated at frequencies similar to those of recognized tumour suppressors. In particular, the core ATPase BRG1 is mutated in 5-10% of childhood medulloblastomas and more than 15% of Burkitt's lymphomas. Here we show a previously unknown function of BAF complexes in decatenating newly replicated sister chromatids, a requirement for proper chromosome segregation during mitosis. We find that deletion of Brg1 in mouse cells, as well as the expression of BRG1 point mutants identified in human tumours, leads to anaphase bridge formation (in which sister chromatids are linked by catenated strands of DNA) and a G2/M-phase block characteristic of the decatenation checkpoint. Endogenous BAF complexes interact directly with endogenous topoisomerase IIα (TOP2A) through BAF250a and are required for the binding of TOP2A to approximately 12,000 sites across the genome. Our results demonstrate that TOP2A chromatin binding is dependent on the ATPase activity of BRG1, which is compromised in oncogenic BRG1 mutants. These studies indicate that the ability of TOP2A to prevent DNA entanglement at mitosis requires BAF complexes and suggest that this activity contributes to the role of BAF subunits as tumour suppressors.


Assuntos
Antígenos de Neoplasias/metabolismo , DNA Helicases/metabolismo , DNA Topoisomerases Tipo II/metabolismo , DNA Catenado/química , DNA Catenado/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Anáfase , Animais , Antígenos de Neoplasias/genética , Pontos de Checagem do Ciclo Celular , Cromátides/metabolismo , Montagem e Desmontagem da Cromatina , Segregação de Cromossomos , DNA Helicases/deficiência , DNA Helicases/genética , Replicação do DNA , DNA Topoisomerases Tipo II/genética , Proteínas de Ligação a DNA/genética , Fibroblastos , Fase G2 , Células HEK293 , Humanos , Meduloblastoma/genética , Camundongos , Mitose , Proteínas Nucleares/deficiência , Proteínas Nucleares/genética , Proteínas de Ligação a Poli-ADP-Ribose , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética
16.
Cancer Cell ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-39029465

RESUMO

In Cancer Cell, Bolomsky et al., Duplaquet et al., and He et al. identify cancers that are dependent on the BAF chromatin remodeling complex, specifically IRF4-driven multiple myeloma and POU2F3-subtype small cell lung cancer, highlighting potential therapeutic applications for BAF complex inhibitors/degraders.

17.
bioRxiv ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38798655

RESUMO

Inflammation is an essential defense response but operates at the cost of normal functions. Whether and how the negative impact of inflammation is monitored remains largely unknown. Acidification of the tissue microenvironment is associated with inflammation. Here we investigated whether macrophages sense tissue acidification to adjust inflammatory responses. We found that acidic pH restructured the inflammatory response of macrophages in a gene-specific manner. We identified mammalian BRD4 as a novel intracellular pH sensor. Acidic pH disrupts the transcription condensates containing BRD4 and MED1, via histidine-enriched intrinsically disordered regions. Crucially, decrease in macrophage intracellular pH is necessary and sufficient to regulate transcriptional condensates in vitro and in vivo, acting as negative feedback to regulate the inflammatory response. Collectively, these findings uncovered a pH-dependent switch in transcriptional condensates that enables environmental sensing to directly control inflammation, with a broader implication for calibrating the magnitude and quality of inflammation by the inflammatory cost.

18.
Nature ; 447(7147): 972-8, 2007 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-17538624

RESUMO

Toll-like receptors (TLRs) induce a multi-component inflammatory response that must be tightly regulated to avoid tissue damage. Most known regulatory mechanisms target TLR signalling pathways and thus broadly inhibit multiple aspects of the inflammatory response. Given the functional diversity of TLR-induced genes, we proposed that additional, gene-specific regulatory mechanisms exist to allow individual aspects of the TLR-induced response to be differentially regulated. Using an in vitro system of lipopolysaccharide tolerance in murine macrophages, we show that TLR-induced genes fall into two categories on the basis of their functions and regulatory requirements. We demonstrate that representatives from the two classes acquire distinct patterns of TLR-induced chromatin modifications. These gene-specific chromatin modifications are associated with transient silencing of one class of genes, which includes pro-inflammatory mediators, and priming of the second class, which includes antimicrobial effectors. These findings illustrate an adaptive response in macrophages and reveal component-specific regulation of inflammation.


Assuntos
Cromatina/genética , Cromatina/metabolismo , Regulação da Expressão Gênica/genética , Inflamação/genética , Receptor 4 Toll-Like/metabolismo , Animais , Células Cultivadas , Cromatina/efeitos dos fármacos , Montagem e Desmontagem da Cromatina/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Histonas/metabolismo , Inflamação/induzido quimicamente , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Modelos Genéticos , Regiões Promotoras Genéticas/genética , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/genética
19.
Nat Commun ; 14(1): 292, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36653361

RESUMO

Pancreatic cancer is characterized by extensive resistance to conventional therapies, making clinical management a challenge. Here we map the epigenetic dependencies of cancer stem cells, cells that preferentially evade therapy and drive progression, and identify SWI/SNF complex member SMARCD3 as a regulator of pancreatic cancer cells. Although SWI/SNF subunits often act as tumor suppressors, we show that SMARCD3 is amplified in cancer, enriched in pancreatic cancer stem cells and upregulated in the human disease. Diverse genetic mouse models of pancreatic cancer and stage-specific Smarcd3 deletion reveal that Smarcd3 loss preferentially impacts established tumors, improving survival especially in context of chemotherapy. Mechanistically, SMARCD3 acts with FOXA1 to control lipid and fatty acid metabolism, programs associated with therapy resistance and poor prognosis in cancer. These data identify SMARCD3 as an epigenetic modulator responsible for establishing the metabolic landscape in aggressive pancreatic cancer cells and a potential target for new therapies.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Camundongos , Animais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Epigênese Genética , Neoplasias Pancreáticas
20.
Science ; 381(6664): 1316-1323, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37733872

RESUMO

Although tumor growth requires the mitochondrial electron transport chain (ETC), the relative contribution of complex I (CI) and complex II (CII), the gatekeepers for initiating electron flow, remains unclear. In this work, we report that the loss of CII, but not that of CI, reduces melanoma tumor growth by increasing antigen presentation and T cell-mediated killing. This is driven by succinate-mediated transcriptional and epigenetic activation of major histocompatibility complex-antigen processing and presentation (MHC-APP) genes independent of interferon signaling. Furthermore, knockout of methylation-controlled J protein (MCJ), to promote electron entry preferentially through CI, provides proof of concept of ETC rewiring to achieve antitumor responses without side effects associated with an overall reduction in mitochondrial respiration in noncancer cells. Our results may hold therapeutic potential for tumors that have reduced MHC-APP expression, a common mechanism of cancer immunoevasion.


Assuntos
Antígenos de Neoplasias , Complexo II de Transporte de Elétrons , Complexo I de Transporte de Elétrons , Mitocôndrias , Neoplasias , Humanos , Apresentação de Antígeno , Antígenos de Neoplasias/imunologia , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Complexo II de Transporte de Elétrons/genética , Complexo II de Transporte de Elétrons/metabolismo , Elétrons , Técnicas de Inativação de Genes , Histonas/metabolismo , Proteínas de Choque Térmico HSP40/genética , Melanoma/imunologia , Melanoma/patologia , Metilação , Mitocôndrias/enzimologia , Neoplasias/imunologia , Neoplasias/patologia , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA