RESUMO
Candidate drugs may exhibit higher unbound intrinsic clearances (CLint,u) in human liver microsomes (HLMs) relative to human hepatocytes (HHs), posing a challenge as to which value is more predictive of in vivo clearance (CL). This work was aimed at better understanding the mechanism(s) underlying this 'HLM:HH disconnect' via examination of previous explanations, including passive permeability limited CL or cofactor exhaustion in hepatocytes. A series of structurally related, passively permeable (Papps > 5 × 10-6 cm/s), 5-azaquinazolines were studied in different liver fractions, and metabolic rates and routes were determined. A subset of these compounds demonstrated a significant HLM:HH (CLint,u ratio 2-26) disconnect. Compounds were metabolized via combinations of liver cytosol aldehyde oxidase (AO), microsomal cytochrome P450 (CYP) and flavin monooxygenase (FMO). For this series, the lack of concordance between CLint,u determined in HLM and HH contrasted with an excellent correlation of AO dependent CLint,u determined in human liver cytosol[Formula: see text], r2 = 0.95, P < 0.0001). The HLM:HH disconnect for both 5-azaquinazolines and midazolam was as a result of significantly higher CYP activity in HLM and lysed HH fortified with exogenous NADPH relative to intact HH. Moreover, for the 5-azaquinazolines, the maintenance of cytosolic AO and NADPH-dependent FMO activity in HH, relative to CYP, supports the conclusion that neither substrate permeability nor intracellular NADPH for hepatocytes were limiting CLint,u Further studies are required to identify the underlying cause of the lower CYP activities in HH relative to HLM and lysed hepatocytes in the presence of exogenous NADPH. SIGNIFICANCE STATEMENT: Candidate drugs may exhibit higher intrinsic clearance in human liver microsomes relative to human hepatocytes, posing a challenge as to which value is predictive of in vivo clearance. This work demonstrates that the difference in activity determined in liver fractions results from divergent cytochrome P450 but not aldehyde oxidase or flavin monooxygenase activity. This is inconsistent with explanations including substrate permeability limitations or cofactor exhaustion and should inform the focus of further studies to understand this cytochrome P450 specific disconnect phenomenon.
Assuntos
Hidrocarboneto de Aril Hidroxilases , Microssomos Hepáticos , Humanos , Microssomos Hepáticos/metabolismo , NADP/metabolismo , Hepatócitos/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Hidrocarboneto de Aril Hidroxilases/metabolismo , Taxa de Depuração MetabólicaRESUMO
âThe therapeutic concept of antibody drug conjugates (ADCs) is to selectively target tumour cells with small molecule cytotoxic drugs to maximise cell kill benefit and minimise healthy tissue toxicity.An ADC generally consists of an antibody that targets a protein on the surface of tumour cells chemically linked to a warhead small molecule cytotoxic drug.To deliver the warhead to the tumour cell, the antibody must bind to the target protein and in general be internalised into the cell. Following internalisation, the cytotoxic agent can be released in the endosomal or lysosomal compartment (via different mechanisms). Diffusion or transport out of the endosome or lysosome allows the cytotoxic drug to express its cell-killing pharmacology. Alternatively, some ADCs (e.g. EDB-ADCs) rely on extracellular cleavage releasing membrane permeable warheads.One potentially important aspect of the ADC mechanism is the 'bystander effect' whereby the cytotoxic drug released in the targeted cell can diffuse out of that cell and into other (non-target expressing) tumour cells to exert its cytotoxic effect. This is important as solid tumours tend to be heterogeneous and not all cells in a tumour will express the targeted protein.The combination of large and small molecule aspects in an ADC poses significant challenges to the disposition scientist in describing the ADME properties of the entire molecule.This article will review the ADC landscape and the ADME properties of successful ADCs, with the aim of outlining best practice and providing a perspective of how the field can further facilitate the discovery and development of these important therapeutic modalities.
Assuntos
Antineoplásicos , Imunoconjugados , Neoplasias , Humanos , Antineoplásicos/farmacocinética , Imunoconjugados/farmacocinética , Neoplasias/tratamento farmacológicoRESUMO
The mechanistic understanding of bile salt disposition is not well established in suspension human hepatocytes (SHH) because of the limited information on the expression and function of bile salt export protein (BSEP) in this system. We investigated the transport function of BSEP in SHH using a method involving in situ biosynthesis of bile salts from their precursor bile acids, cholic acid (CA) and chenodeoxycholic acid (CDCA). Our data indicated that glycine- and taurine-conjugated CA and CDCA were generated efficiently and transported out of hepatocytes in a concentration- and time-dependent manner. We also observed that the membrane protein abundance of BSEP was similar between SHH and sandwich-cultured human hepatocytes. Furthermore, known cholestatic agents significantly inhibited G-CA and G-CDCA efflux in SHH. Interestingly, cyclosporine A, troglitazone, itraconazole, loratadine, and lovastatin inhibited G-CA efflux more potently than G-CDCA efflux (3- to 5-fold). Because of these significant differential effects on G-CA and G-CDCA efflux inhibition, we determined the IC50 values of troglitazone for G-CA (9.9 µM) and for G-CDCA (43.1 µM) efflux. The observed discrepancy in the IC50 was attributed to the fact that troglitazone also inhibits organic anion transporting polypeptides and Na+/taurocholate cotransporting polypeptide in addition to BSEP. The hepatocyte uptake study suggested that both active uptake and passive diffusion contribute to the liver uptake of CA, whereas CDCA primarily undergoes passive diffusion into the liver. In summary, these data demonstrated the expression and function of BSEP and its major role in transport of bile salts in cryopreserved SHH. SIGNIFICANCE STATEMENT: BSEP transport function and protein abundance was evident in SHH in the present study. The membrane abundance of BSEP protein was similar between SHH and sandwich-cultured human hepatocytes. The study also illustrated the major role of BSEP relative to basolateral MRP3 and MRP4 in transport of bile salts in SHH. Understanding of BSEP function in SHH may bolster the utility of this platform in mechanistic understanding of bile salt disposition and potentially in the assessment of drugs for BSEP inhibition.
Assuntos
Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/biossíntese , Ácidos e Sais Biliares/metabolismo , Ácidos e Sais Biliares/farmacologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Células Cultivadas , Humanos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismoRESUMO
Translational and ADME Sciences Leadership Group Induction Working Group (IWG) presents an analysis on the time course for cytochrome P450 induction in primary human hepatocytes. Induction of CYP1A2, CYP2B6, and CYP3A4 was evaluated by seven IWG laboratories after incubation with prototypical inducers (omeprazole, phenobarbital, rifampicin, or efavirenz) for 6-72 hours. The effect of incubation duration and model-fitting approaches on induction parameters (Emax and EC50) and drug-drug interaction (DDI) risk assessment was determined. Despite variability in induction response across hepatocyte donors, the following recommendations are proposed: 1) 48 hours should be the primary time point for in vitro assessment of induction based on mRNA level or activity, with no further benefit from 72 hours; 2) when using mRNA, 24-hour incubations provide reliable assessment of induction and DDI risk; 3) if validated using prototypical inducers (>10-fold induction), 12-hour incubations may provide an estimate of induction potential, including characterization as negative if <2-fold induction of mRNA and no concentration dependence; 4) atypical dose-response ("bell-shaped") curves can be addressed by removing points outside an established confidence interval and %CV; 5) when maximum fold induction is well defined, the choice of nonlinear regression model has limited impact on estimated induction parameters; 6) when the maximum fold induction is not well defined, conservative DDI risk assessment can be obtained using sigmoidal three-parameter fit or constraining logistic three- or four-parameter fits to the maximum observed fold induction; 7) preliminary data suggest initial slope of the fold induction curve can be used to estimate Emax/EC50 and for induction risk assessment. SIGNIFICANCE STATEMENT: Regulatory agencies provide inconsistent guidance on the optimum length of time to evaluate cytochrome P450 induction in human hepatocytes, with EMA recommending 72 hours and FDA suggesting 48-72 hours. The Induction Working Group analyzed a large data set generated by seven member companies and determined that induction response and drug-drug risk assessment determined after 48-hour incubations were representative of 72-hour incubations. Additional recommendations are provided on model-fitting techniques for induction parameter estimation and addressing atypical concentration-response curves.
Assuntos
Desenvolvimento de Medicamentos , Interações Medicamentosas , Controle de Medicamentos e Entorpecentes , Medição de Risco/métodos , Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP2B6/metabolismo , Citocromo P-450 CYP3A/metabolismo , Desenvolvimento de Medicamentos/métodos , Desenvolvimento de Medicamentos/normas , Controle de Medicamentos e Entorpecentes/métodos , Controle de Medicamentos e Entorpecentes/organização & administração , Indução Enzimática , Guias como Assunto , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Modelos Biológicos , Farmacocinética , Reprodutibilidade dos TestesRESUMO
Induction of cytochrome P450 isoform 3A4 via activation of the pregnane xenobiotic receptor (PXR) is a concern for pharmaceutical discovery and development, as it can lead to drug-drug interactions. We present a novel molecular descriptor, the smallest maximum intramolecular distance (SMID), which is correlated with PXR activation, and a method for using the SMID descriptor to guide discovery chemists in modifying lead compounds to decrease PXR activation.
Assuntos
Receptores de Esteroides , Citocromo P-450 CYP3A , Interações Medicamentosas , Receptor de Pregnano X , Pregnanos , Xenobióticos/toxicidadeRESUMO
A recent publication from the Innovation and Quality Consortium Induction Working Group collated a large clinical data set with the goal of evaluating the accuracy of drug-drug interaction (DDI) prediction from in vitro data. Somewhat surprisingly, comparison across studies of the mean- or median-reported area under the curve ratio showed appreciable variability in the magnitude of outcome. This commentary explores the possible drivers of this range of outcomes observed in clinical induction studies. While recommendations on clinical study design are not being proposed, some key observations were informative during the aggregate analysis of clinical data. Although DDI data are often presented using median data, individual data would enable evaluation of how differences in study design, baseline expression, and the number of subjects contribute. Since variability in perpetrator pharmacokinetics (PK) could impact the overall DDI interpretation, should this be routinely captured? Maximal induction was typically observed after 5-7 days of dosing. Thus, when the half-life of the inducer is less than 30 hours, are there benefits to a more standardized study design? A large proportion of CYP3A4 inducers were also CYP3A4 inhibitors and/or inactivators based on in vitro data. In these cases, using CYP3A selective substrates has limitations. More intensive monitoring of changes in area under the curve over time is warranted. With selective CYP3A substrates, the net effect was often inhibition, whereas less selective substrates could discern induction through mechanisms not susceptible to inhibition. The latter included oral contraceptives, which raise concerns of reduced efficacy following induction. Alternative approaches for modeling induction, such as applying biomarkers and physiologically based pharmacokinetic modeling (PBPK), are also considered. SIGNIFICANCE STATEMENT: The goal of this commentary is to stimulate discussion on whether there are opportunities to optimize clinical drug-drug interaction study design. The overall aim is to reduce, understand and contextualize the variability observed in the magnitude of induction across reported clinical studies. A large clinical CYP3A induction dataset was collected and further analyzed to identify trends and gaps. Reporting individual victim PK data, characterizing perpetrator PK and including additional PK assessments for mixed-mechanism perpetrators may provide insights into how these factors impact differences observed in clinical outcomes. The potential utility of biomarkers and PBPK modeling are discussed in considering future directions.
Assuntos
Ensaios Clínicos como Assunto , Indutores do Citocromo P-450 CYP3A/farmacocinética , Inibidores do Citocromo P-450 CYP3A/farmacocinética , Citocromo P-450 CYP3A/metabolismo , Variação Biológica da População , Indutores do Citocromo P-450 CYP3A/administração & dosagem , Inibidores do Citocromo P-450 CYP3A/administração & dosagem , Relação Dose-Resposta a Droga , Interações Medicamentosas , Feminino , Meia-Vida , Humanos , Masculino , Projetos de PesquisaRESUMO
The Innovation and Quality Induction Working Group presents an assessment of best practice for data interpretation of in vitro induction, specifically, response thresholds, variability, application of controls, and translation to clinical risk assessment with focus on CYP3A4 mRNA. Single concentration control data and Emax/EC50 data for prototypical CYP3A4 inducers were compiled from many human hepatocyte donors in different laboratories. Clinical CYP3A induction and in vitro data were gathered for 51 compounds, 16 of which were proprietary. A large degree of variability was observed in both the clinical and in vitro induction responses; however, analysis confirmed in vitro data are able to predict clinical induction risk. Following extensive examination of this large data set, the following recommendations are proposed. a) Cytochrome P450 induction should continue to be evaluated in three separate human donors in vitro. b) In light of empirically divergent responses in rifampicin control and most test inducers, normalization of data to percent positive control appears to be of limited benefit. c) With concentration dependence, 2-fold induction is an acceptable threshold for positive identification of in vitro CYP3A4 mRNA induction. d) To reduce the risk of false positives, in the absence of a concentration-dependent response, induction ≥ 2-fold should be observed in more than one donor to classify a compound as an in vitro inducer. e) If qualifying a compound as negative for CYP3A4 mRNA induction, the magnitude of maximal rifampicin response in that donor should be ≥ 10-fold. f) Inclusion of a negative control adds no value beyond that of the vehicle control.
Assuntos
Indutores do Citocromo P-450 CYP3A/metabolismo , Citocromo P-450 CYP3A/metabolismo , Controle de Medicamentos e Entorpecentes , Invenções/normas , Controle de Qualidade , RNA Mensageiro/metabolismo , Indutores do Citocromo P-450 CYP3A/farmacologia , Interações Medicamentosas/fisiologia , Flumazenil/metabolismo , Flumazenil/farmacologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Rifampina/metabolismo , Rifampina/farmacologiaRESUMO
The use of in vitro data for the quantitative prediction of transporter-mediated clearance is critical. Central to this evaluation is the use of hepatocytes, since they contain the full complement of transporters and metabolic enzymes. In general, uptake clearance (CLuptake) is evaluated by measuring the appearance of compound in the cell. Passive clearance (CLpd) is often determined by conducting parallel studies at 4 °C or by attempting to saturate uptake pathways. Both approaches have their limitations. Recent studies have proposed the use of Rifamycin-SV (RFV) as a pan-inhibitor of hepatic uptake pathways. In our studies, we confirm that transport activity of all major hepatic uptake transporters is inhibited significantly by RFV at 1 mM (OATP1B1, 1B3, and 2B1 = NTCP (80%), OCT1 (65%), OAT2 (60%)). Under these incubation conditions, we found that the free intracellular concentration of RFV is â¼175 µM and that several major CYPs and UGTs can be reversibly inhibited. Using this approach, we also determined CLuptake and CLpd of nine known OATP substrates across three different lots of human hepatocytes. The scaling factors generated for these compounds at 37 °C with RFV and 4 °C were found to be similar. The CLpd of passively permeable compounds like metoprolol and semagacestat were found to be higher at 37 °C compared to 4 °C, indicating a temperature effect on these compounds. In addition, our data also suggests that incorporation of medium concentrations into CLuptake and CLpd calculations may be critical for highly protein bound and highly lipophilic drugs. Overall, our data indicate that RFV, instead of 4 °C, can be reliably used to measure CLuptake and CLpd of drugs.
Assuntos
Hepatócitos/metabolismo , Fígado/metabolismo , Rifamicinas/metabolismo , Alanina/análogos & derivados , Alanina/metabolismo , Azepinas/metabolismo , Transporte Biológico , Humanos , Cinética , Metoprolol/metabolismoRESUMO
Typically, concentration-response curves are based upon nominal inducer concentrations for in-vitro-to-in-vivo extrapolation of CYP3A4 induction. The limitation of this practice is that it assumes the hepatocyte culture model is a static system. We assessed whether correcting for: 1) changes in perpetrator concentration in the induction medium during the incubation period, 2) perpetrator binding to proteins in the induction medium, and 3) nonspecific binding of perpetrator can improve the accuracy of CYP3A4 induction predictions. Of the seven compounds used in this evaluation, significant parent loss and nonspecific binding were observed for rifampicin (29.3-38.3%), pioglitazone (64.3-78.6%), and rosiglitazone (57.1-75.5%). As a result, the free measured EC50 values (EC50u) of pioglitazone, rosiglitazone, and rifampicin were significantly lower than the nominal EC50 values. In general, the accuracy of the induction predictions, using multiple static models, improved when corrections were made for measured medium concentrations, medium protein binding, and nonspecific binding of the perpetrator, as evidenced by 18-29% reductions in the root mean square error. The relative induction score model performed better than the basic static and mechanistic static models, resulting in lower prediction error and no false-positive or false-negative predictions. However, even when the EC50u value was used, the induction prediction for bosentan, which is a substrate of organic anion transporter proteins, was overpredicted by approximately 2-fold. Accounting for the ratio of unbound intracellular concentrations to unbound medium concentrations (Kpuu,in vitro) (0.5-7.5) and the predicted multiple-dose Kpuu,in vivo (0.6) for bosentan resulted in induction predictions within 35% of the observed interaction.
Assuntos
Indutores do Citocromo P-450 CYP3A/farmacologia , Citocromo P-450 CYP3A/biossíntese , Hepatócitos/efeitos dos fármacos , Hepatócitos/enzimologia , Criopreservação , Citocromo P-450 CYP3A/metabolismo , Indutores do Citocromo P-450 CYP3A/farmacocinética , Relação Dose-Resposta a Droga , Interações Medicamentosas , Indução Enzimática/efeitos dos fármacos , Hepatócitos/citologia , Hepatócitos/metabolismo , Humanos , Cinética , Pioglitazona , Rifampina/farmacocinética , Rifampina/farmacologia , Rosiglitazona , Tiazolidinedionas/farmacocinética , Tiazolidinedionas/farmacologiaRESUMO
The European Medicines Agency (EMA), the Pharmaceutical and Medical Devices Agency (PMDA), and the Food and Drug Administration (FDA) have issued guidelines for the conduct of drug-drug interaction studies. To examine the applicability of these regulatory recommendations specifically for induction, a group of scientists, under the auspices of the Drug Metabolism Leadership Group of the Innovation and Quality (IQ) Consortium, formed the Induction Working Group (IWG). A team of 19 scientists, from 16 of the 39 pharmaceutical companies that are members of the IQ Consortium and two Contract Research Organizations reviewed the recommendations, focusing initially on the current EMA guidelines. Questions were collated from IQ member companies as to which aspects of the guidelines require further evaluation. The EMA was then approached to provide insights into their recommendations on the following: 1) evaluation of downregulation, 2) in vitro assessment of CYP2C induction, 3) the use of CITCO as the positive control for CYP2B6 induction by CAR, 4) data interpretation (a 2-fold increase in mRNA as evidence of induction), and 5) the duration of incubation of hepatocytes with test article. The IWG conducted an anonymous survey among IQ member companies to query current practices, focusing specifically on the aforementioned key points. Responses were received from 19 companies. All data and information were blinded before being shared with the IWG. The results of the survey are presented, together with consensus recommendations on downregulation, CYP2C induction, and CYP2B6 positive control. Results and recommendations related to data interpretation and induction time course will be reported in subsequent articles.
Assuntos
Citocromo P-450 CYP2B6/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Regulação para Baixo/fisiologia , Interações Medicamentosas/fisiologia , Preparações Farmacêuticas/metabolismo , Indústria Farmacêutica/métodos , Humanos , Estados Unidos , United States Food and Drug AdministrationRESUMO
Previously we assessed the inductive response of prototypical inducers in hepatocyte monocultures and the long-term coculture model HepatoPac using cryopreserved hepatocytes from the same donors. We noted that the rifampicin EC50 generated using the HepatoPac model corresponded better to the EC50 based on clinical data compared with data generated in the monoculture system. We postulated that there may be differences in the functioning of uptake transporters between the two systems that may have led to the EC50 difference. In this study, we characterized the functional activity of multiple uptake transporters in the two systems using cryopreserved hepatocytes from the same donors. Our data suggest that uptake transporter activity is higher in HepatoPac compared with the monoculture system. As a follow up to this study, we measured the intracellular concentrations of rifampicin and bosentan, which are known substrates of uptake transporters; we observed significantly higher intracellular concentrations of both compounds in HepatoPac relative to the monoculture system. This finding equated to lower cytochrome P450 isoform 3A4 (CYP3A4) EC50 values in the HepatoPac system compared with the monoculture system for both mRNA and activity. In parallel, no significant EC50 shift was observed for carbamazepine and phenytoin, which are not known to be substrates of uptake transporters. Our data suggest that next generation liver models such as HepatoPac may be a useful in vitro tool to quantitatively predict drug-drug interactions when it is known that the perpetrator is also a substrate of drug transporters.
Assuntos
Citocromo P-450 CYP3A/metabolismo , Hepatócitos/metabolismo , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/fisiologia , Células Cultivadas , Técnicas de Cocultura/métodos , Criopreservação/métodos , Indutores do Citocromo P-450 CYP3A/farmacologia , Interações Medicamentosas/fisiologia , Hepatócitos/efeitos dos fármacos , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , RNA Mensageiro/metabolismo , Rifampina/farmacologiaRESUMO
Long-term coculture models of hepatocytes are promising tools to study drug transport, clearance, and hepatoxicity. In this report we compare the basal expression of drug disposition genes and the inductive response of prototypical inducers (rifampin, phenobarbital, phenytoin) in hepatocyte two-dimensional monocultures and the long-term coculture model (HepatoPac). All the inducers used in the study increased the expression and activity of CYP3A4, CYP2B6 and CYP2C enzymes in the HepatoPac cultures. The coculture model showed a consistent and higher induction of CYP2C enzymes compared with the monocultures. The EC50 of rifampin for CYP3A4 and CYP2C9 was up to 10-fold lower in HepatoPac than the monocultures. The EC50 of rifampin calculated from the clinical drug interaction studies correlated well with the EC50 observed in the HepatoPac cultures. Owing to the long-term stability of the HepatoPac cultures, we were able to directly measure a half-life (t1/2) for both CYP3A4 and CYP2B6 using the depletion kinetics of mRNA and functional activity. The t1/2 for CYP3A4 mRNA was 26 hours and that for the functional protein was 49 hours. The t1/2 of CYP2B6 was 38 hours (mRNA) and 68 hours (activity), which is longer than CYP3A4 and shows the differential turnover of these two proteins. This is the first study to our knowledge to report the turnover rate of CYP2B6 in human hepatocytes. The data presented here demonstrate that the HepatoPac cultures have the potential to be used in long-term culture to mimic complex clinical scenarios.
Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Hepatócitos/metabolismo , Xenobióticos/metabolismo , Transporte Biológico/fisiologia , Células Cultivadas , Técnicas de Cocultura/métodos , Meia-Vida , Humanos , Fenobarbital/metabolismo , Fenitoína/metabolismo , RNA Mensageiro/metabolismo , Rifampina/metabolismoRESUMO
(R)-2-((2-(1H-pyrrolo[2,3-b]pyridin-3-yl)pyrimidin-4-yl)amino)-2-methyl-N-(2,2,2-trifluoroethyl)butanamide (VX-509, decernotinib) is an oral Janus kinase 3 inhibitor that has been studied in patients with rheumatoid arthritis. Patients with rheumatoid arthritis often receive multiple medications, such as statins and steroids, to manage the signs and symptoms of comorbidities, which increases the chances of drug-drug interactions (DDIs). Mechanism-based inhibition is a subset of time-dependent inhibition (TDI) and occurs when a molecule forms a reactive metabolite which irreversibly binds and inactivates drug-metabolizing enzymes, potentially increasing the systemic load to toxic concentrations. Traditionally, perpetrating compounds are screened using human liver microsomes (HLMs); however, this system may be inadequate when the precipitant is activated by a non-cytochrome P450 (P450)-mediated pathway. Even though studies assessing competitive inhibition and TDI using HLM suggested a low risk for CYP3A4-mediated DDI in the clinic, VX-509 increased the area under the curve of midazolam, atorvastatin, and methyl-prednisolone by approximately 12.0-, 2.7-, and 4.3-fold, respectively. Metabolite identification studies using human liver cytosol indicated that VX-509 is converted to an oxidative metabolite, which is the perpetrator of the DDIs observed in the clinic. As opposed to HLM, hepatocytes contain the full complement of drug-metabolizing enzymes and transporters and can be used to assess TDI arising from non-P450-mediated metabolic pathways. In the current study, we highlight the role of aldehyde oxidase in the formation of the hydroxyl-metabolite of VX-509, which is involved in clinically significant TDI-based DDIs and represents an additional example in which a system-dependent prediction of TDI would be evident.
Assuntos
Aldeído Oxidase/farmacologia , Inibidores do Citocromo P-450 CYP3A/farmacologia , Citocromo P-450 CYP3A/metabolismo , Compostos Heterocíclicos com 2 Anéis/farmacologia , Inibidores de Janus Quinases/farmacologia , Fígado/enzimologia , Microssomos Hepáticos/enzimologia , Valina/análogos & derivados , Adulto , Idoso , Aldeído Oxidase/metabolismo , Biotransformação , Células Cultivadas , Inibidores do Citocromo P-450 CYP3A/metabolismo , Inibidores do Citocromo P-450 CYP3A/toxicidade , Relação Dose-Resposta a Droga , Interações Medicamentosas , Feminino , Hepatócitos/enzimologia , Compostos Heterocíclicos com 2 Anéis/metabolismo , Compostos Heterocíclicos com 2 Anéis/toxicidade , Humanos , Hidroxilação , Inibidores de Janus Quinases/metabolismo , Inibidores de Janus Quinases/toxicidade , Cinética , Masculino , Pessoa de Meia-Idade , Medição de Risco , Valina/metabolismo , Valina/farmacologia , Valina/toxicidade , Adulto JovemRESUMO
Aminobenzotriazole (ABT) is commonly used as a non-selective inhibitor of cytochrome P450 (CYP) enzymes to assign contributions of CYP versus non-CYP pathways to the metabolism of new chemical entities. Despite widespread use, a systematic review of the drug-drug interaction (DDI) potential for ABT has not been published nor have the implications for using it in plated hepatocyte models for low clearance reaction phenotyping. The goal being to investigate the utility of ABT as a pan-CYP inhibitor for reaction phenotyping of low clearance compounds by evaluating stability over the incubation period, inhibition potential against UGT and sulfotransferase enzymes, and interaction with nuclear receptors involved in the regulation of drug metabolizing enzymes and transporters. Induction potential for additional inhibitors used to ascribe fraction metabolism (fm ), pathway including erythromycin, ketoconazole, azamulin, atipamezole, ZY12201, and quinidine was also investigated. ABT significantly inhibited the clearance of a non-selective UGT substrate 4-methylumbelliferone, with several UGTs shown to be inhibited using selective probe substrates in human hepatocytes and rUGTs. The inhibitors screened in the induction assay were shown to induce enzymes regulated through Aryl Hydrocarbon Receptor, Constitutive Androstane Receptor, and Pregnane X Receptor. Lastly, a case study identifying the mechanisms of a clinical DDI between Palbociclib and ARV-471 is provided as an example of the potential consequences of using ABT to derive fm . This work demonstrates that ABT is not an ideal pan-CYP inhibitor for reaction phenotyping of low clearance compounds and establishes a workflow that can be used to enable robust characterization of other prospective inhibitors.
Assuntos
Sistema Enzimático do Citocromo P-450 , Hepatócitos , Humanos , Sistema Enzimático do Citocromo P-450/metabolismo , Hepatócitos/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismoRESUMO
Physiologically-based pharmacokinetic (PBPK) modeling offers a viable approach to predict induction drug-drug interactions (DDIs) with the potential to streamline or reduce clinical trial burden if predictions can be made with sufficient confidence. In the current work, the ability to predict the effect of rifampin, a well-characterized strong CYP3A4 inducer, on 20 CYP3A probes with publicly available PBPK models (often developed using a workflow with optimization following a strong inhibitor DDI study to gain confidence in fraction metabolized by CYP3A4, fm,CYP3A4, and fraction available after intestinal metabolism, Fg), was assessed. Substrates with a range of fm,CYP3A4 (0.086-1.0), Fg (0.11-1.0) and hepatic availability (0.09-0.96) were included. Predictions were most often accurate for compounds that are not P-gp substrates or that are P-gp substrates but that have high permeability. Case studies for three challenging DDI predictions (i.e., for eliglustat, tofacitinib, and ribociclib) are presented. Along with parameter sensitivity analysis to understand key parameters impacting DDI simulations, alternative model structures should be considered, for example, a mechanistic absorption model instead of a first-order absorption model might be more appropriate for a P-gp substrate with low permeability. Any mechanisms pertinent to the CYP3A substrate that rifampin might impact (e.g., induction of other enzymes or P-gp) should be considered for inclusion in the model. PBPK modeling was shown to be an effective tool to predict induction DDIs with rifampin for CYP3A substrates with limited mechanistic complications, increasing confidence in the rifampin model. While this analysis focused on rifampin, the learnings may apply to other inducers.
RESUMO
Trastuzumab deruxtecan (T-DXd; DS-8201; ENHERTU®) is a human epithelial growth factor receptor 2 (HER2)-directed antibody drug conjugate (ADC) with demonstrated antitumor activity against a range of tumor types. Aiming to understand the relationship between antigen expression and downstream efficacy outcomes, T-DXd was administered in tumor-bearing mice carrying NCI-N87, Capan-1, JIMT-1, and MDA-MB-468 xenografts, characterized by varying HER2 levels. Plasma pharmacokinetics (PK) of total antibody, T-DXd, and released DXd and tumor concentrations of released DXd were evaluated, in addition to monitoring γΗ2AX and pRAD50 pharmacodynamic (PD) response. A positive relationship was observed between released DXd concentrations in tumor and HER2 expression, with NCI-N87 xenografts characterized by the highest exposures compared to the remaining cell lines. γΗ2AX and pRAD50 demonstrated a sustained increase over several days occurring with a time delay relative to tumoral-released DXd concentrations. In vitro investigations of cell-based DXd disposition facilitated the characterization of DXd kinetics across tumor cells. These outputs were incorporated into a mechanistic mathematical model, utilized to describe PK/PD trends. The model captured plasma PK across dosing arms as well as tumor PK in NCI-N87, Capan-1, and MDA-MB-468 models; tumor concentrations in JIMT-1 xenografts required additional parameter adjustments reflective of complex receptor dynamics. γΗ2AX longitudinal trends were well characterized via a unified PD model implemented across xenografts demonstrating the robustness of measured PD trends. This work supports the application of a mechanistic model as a quantitative tool, reliably projecting tumor payload concentrations upon T-DXd administration, as the first step towards preclinical-to-clinical translation.
Assuntos
Imunoconjugados , Receptor ErbB-2 , Trastuzumab , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Trastuzumab/farmacocinética , Trastuzumab/farmacologia , Receptor ErbB-2/metabolismo , Camundongos , Humanos , Imunoconjugados/farmacocinética , Imunoconjugados/farmacologia , Linhagem Celular Tumoral , Feminino , Camptotecina/análogos & derivados , Camptotecina/farmacocinética , Camptotecina/farmacologia , Antineoplásicos Imunológicos/farmacocinética , Antineoplásicos Imunológicos/farmacologia , Antineoplásicos Imunológicos/administração & dosagem , Camundongos NusRESUMO
Casitas B-lymphoma proto-oncogene-b (Cbl-b), a member of the Cbl family of RING finger E3 ubiquitin ligases, has been demonstrated to play a central role in regulating effector T-cell function. Multiple studies using gene-targeting approaches have provided direct evidence that Cbl-b negatively regulates T, B, and NK cell activation via a ubiquitin-mediated protein modulation. Thus, inhibition of Cbl-b ligase activity can lead to immune activation and has therapeutic potential in immuno-oncology. Herein, we describe the discovery and optimization of an arylpyridone series as Cbl-b inhibitors by structure-based drug discovery to afford compound 31. This compound binds to Cbl-b with an IC50 value of 30 nM and induces IL-2 production in T-cells with an EC50 value of 230 nM. Compound 31 also shows robust intracellular target engagement demonstrated through inhibition of Cbl-b autoubiquitination, inhibition of ubiquitin transfer to ZAP70, and the cellular modulation of phosphorylation of a downstream signal within the TCR axis.
Assuntos
Proteínas Proto-Oncogênicas c-cbl , Ubiquitina-Proteína Ligases , Proteínas Proto-Oncogênicas c-cbl/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Linfócitos T/metabolismo , Fosforilação , Ubiquitina/metabolismoRESUMO
Intraperitonial (i.p.) delivery during initial stages of drug discovery can allow efficacy readouts for compounds which have suboptimal pharmacokinetics (PK) due to poor physiochemical properties and/or oral bioavailability. A major limitation for widespread use of i.p. administration is the paucity of published data and unclear mechanisms of absorption, particularly when using complex formulations. The aim of the present study was to investigate the PK of poorly soluble compounds with low oral bioavailability when administered i.p. as crystalline nano- and microsuspensions. Three compounds, with varying aqueous solubility (2, 7, and 38 µM, at 37 °C), were dosed to mice at 10 and 50 mg/kg. In vitro dissolution confirmed that nanocrystals dissolved faster than microcrystals and hence were expected to result in higher exposure after i.p. dosing. Surprisingly, the increase in dissolution rate with decrease in particle size did not result in higher in vivo exposure. In contrast, the microcrystals showed higher exposure. The potential of smaller particles to promote access to the lymphatic system is hypothesized and discussed as one plausible explanation. The present work demonstrates the importance of understanding physicochemical properties of drug formulations in the context of the microphysiology at the delivery site and how that knowledge can be leveraged to alter systemic PK.
Assuntos
Nanopartículas , Camundongos , Animais , Injeções Intraperitoneais , Disponibilidade Biológica , Solubilidade , Composição de Medicamentos , Injeções , Tamanho da Partícula , Administração Oral , Nanopartículas/químicaRESUMO
The exposure of a dendritic nanoparticle and its conjugated active pharmaceutical ingredient (API) was determined in mouse, rat and dog, with the aim of investigating interspecies differences facilitating clinical translation. Plasma area under the curves (AUCs) were found to be dose proportional across species, while dose normalized concentration time course profiles in plasma, liver and spleen were superimposable in mouse, rat and dog. A physiologically based pharmacokinetic (PBPK) model, previously developed for mouse, was evaluated as a suitable framework to prospectively capture concentration dynamics in rat and dog. The PBPK model, parameterized either by considering species-specific physiology or using alternate scaling methods such as allometry, was shown to capture exposure profiles across species. A sensitivity analysis highlighted API systemic clearance as a key parameter influencing released API levels. The PBPK model was utilized to simulate human exposure profiles, which overlaid dose-normalized data from mouse, rat and dog. The consistency in measured interspecies exposures as well as the capability of the PBPK model to simulate observed dynamics support its use as a powerful translational tool.
Assuntos
Modelos Biológicos , Nanopartículas , Ratos , Camundongos , Humanos , Animais , Cães , Distribuição Tecidual , Área Sob a Curva , FígadoRESUMO
Capturing human equivalent drug exposures preclinically is a key challenge in the translational process. Motivated by the need to recapitulate the pharmacokinetic (PK) profile of the clinical stage Mcl-1 inhibitor AZD5991 in mice, we describe the methodology used to develop a refined mathematical model relating clinically relevant concentration profiles to efficacy. Administration routes were explored to achieve target exposures matching the clinical exposure of AZD5991. Intravenous infusion using vascular access button (VAB) technology was found to best reproduce clinical target exposures of AZD5991 in mice. Exposure-efficacy relationships were evaluated, demonstrating that dissimilar PK profiles result in differences in target engagement and efficacy outcomes. Thus, these data underscore the importance of accurately ascribing key PK metrics in the translational process to enable clinically meaningful predictions of efficacy.