Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Chem Res Toxicol ; 37(6): 968-980, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38743843

RESUMO

The widespread use of silver nanoparticles (AgNPs) in various applications and industries has brought to light the need for understanding the complex relationship between the physicochemical properties (shape, size, charge, and surface chemistry) of AgNPs that affect their ability to enter cells and cause toxicity. To evaluate their toxicological outcomes, this study systematically analyzed a series of homogeneous hybrid lipid-coated AgNPs spanning sizes from 5 to 100 nm with diverse shapes (spheres, triangles, and cubes). The hybrid lipid membrane comprises hydrogenated phosphatidylcholine (HPC), sodium oleate (SOA), and hexanethiol (HT), which shield the AgNP surface from surface oxidation and toxic Ag+ ion release to minimize its contribution to toxicity. To reduce any significant effects by surface chemistry, the HPC, SOA, and HT membrane composition ratio was kept constant, and the AgNPs were assessed using embryonic zebrafish (Danio rerio). While a direct comparison cannot be drawn due to the lack of complementary sizes below 40 nm for triangular plates and cubes due to synthetic challenges, significant mortality was observed for spherical AgNPs (AgNSs) of 5, 20, 40, and 60 nm at 120 h postfertilization at concentrations ≥6 mg Ag/L. In contrast, the 10, 80, and 100 nm AgNSs, 40, 70, and 100 nm triangular plate AgNPs (AgNPLs), and 55, 75, and 100 nm cubic AgNPs (AgNCs) showed no significant mortality at 5 days postfertilization following exposure to AgNPs at concentrations up to 12 mg Ag/L. With constant surface chemistry on the AgNPs, size is the dominant factor driving toxicological responses, with smaller nanoparticles (5 to 60 nm) being the most toxic. Larger AgNSs, AgNCs, and AgNPLs from 75 to 100 nm do not show any evidence of toxicity. However, when closely examining sizes between 40 and 60 nm for AgNSs, AgNCs, and AgNPLs, there is evidence that discriminates shape as a driver of toxicity since sublethal responses generally were observed to follow a pattern, suggesting toxicity is most significant for AgNSs followed by AgNPLs and then AgNCs, which is the least toxic. Sum frequency generation vibrational spectroscopy showed that irrespective of size or shape, all hybrid lipid-coated AgNPs interact with membrane surfaces and "snorkel" between phases into the lipid monolayer with minimal energetic cost. These findings decisively demonstrate that not only smaller AgNPs but also the shape of the AgNPs influences their biological compatibility.


Assuntos
Membrana Celular , Nanopartículas Metálicas , Tamanho da Partícula , Prata , Peixe-Zebra , Prata/química , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Animais , Membrana Celular/efeitos dos fármacos , Membrana Celular/química , Propriedades de Superfície , Ácido Oleico/química , Fosfatidilcolinas/química , Lipídeos/química
2.
Molecules ; 24(24)2019 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-31817417

RESUMO

The decline in populations of insect pollinators is a global concern. While multiple factors are implicated, there is uncertainty surrounding the contribution of certain groups of pesticides to losses in wild and managed bees. Nanotechnology-based pesticides (NBPs) are formulations based on multiple particle sizes and types. By packaging active ingredients in engineered particles, NBPs offer many benefits and novel functions, but may also exhibit different properties in the environment when compared with older pesticide formulations. These new properties raise questions about the environmental disposition and fate of NBPs and their exposure to pollinators. Pollinators such as honey bees have evolved structural adaptations to collect pollen, but also inadvertently gather other types of environmental particles which may accumulate in hive materials. Knowledge of the interaction between pollinators, NBPs, and other types of particles is needed to better understand their exposure to pesticides, and essential for characterizing risk from diverse environmental contaminants. The present review discusses the properties, benefits and types of nanotechnology-based pesticides, the propensity of bees to collect such particles and potential impacts on bee pollinators.


Assuntos
Abelhas/fisiologia , Nanotecnologia , Praguicidas , Polinização/efeitos dos fármacos , Animais , Humanos , Praguicidas/efeitos adversos , Praguicidas/química , Praguicidas/farmacologia , Pólen
3.
Cellulose (Lond) ; 23(3): 1763-1775, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27468180

RESUMO

Cellulose is an abundant and renewable resource currently being investigated for utility in nanomaterial form for various promising applications ranging from medical and pharmaceutical uses to mechanical reinforcement and biofuels. The utility of nanocellulose and wide implementation ensures increasing exposure to humans and the environment as nanocellulose-based technologies advance. Here, we investigate how differences in aspect ratio and changes to surface chemistry, as well as synthesis methods, influence the biocompatibility of nanocellulose materials using the embryonic zebrafish. Investigations into the toxicity of neutral, cationic and anionic surface functionalities revealed that surface chemistry had a minimal influence on the overall toxicity of nanocellulose materials. Higher aspect ratio cellulose nanofibers produced by mechanical homogenization were, in some cases, more toxic than other cellulose-based nanofibers or nanocrystals produced by chemical synthesis methods. Using fluorescently labeled nanocellulose we were able to show that nanocellulose uptake did occur in embryonic zebrafish during development. We conclude that the benign nature of nanocellulose materials makes them an ideal platform to systematically investigate the inherent surface features driving nanomaterial toxicity in order to create safer design principles for engineered nanoparticles.

4.
Nanomaterials (Basel) ; 14(8)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38668148

RESUMO

We investigated the impacts of spherical and triangular-plate-shaped lipid-coated silver nanoparticles (AgNPs) designed to prevent surface oxidation and silver ion (Ag+) dissolution in a small-scale microcosm to examine the role of shape and surface functionalization on biological interactions. Exposures were conducted in microcosms consisting of algae, bacteria, crustaceans, and fish embryos. Each microcosm was exposed to one of five surface chemistries within each shape profile (at 0, 0.1, or 0.5 mg Ag/L) to investigate the role of shape and surface composition on organismal uptake and toxicity. The hybrid lipid-coated AgNPs did not result in any significant release of Ag+ and had the most significant toxicity to D. magna, the most sensitive species, although the bacterial population growth rate was reduced in all exposures. Despite AgNPs resulting in increasing algal growth over the experiment, we found no correlation between algal growth and the survival of D. magna, suggesting that the impacts of the AgNPs on bacterial survival influenced algal growth rates. No significant impacts on zebrafish embryos were noted in any exposure. Our results demonstrate that the size, shape, and surface chemistry of AgNPs can be engineered to achieve specific goals while mitigating nanoparticle risks.

5.
Micromachines (Basel) ; 14(10)2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37893340

RESUMO

As plastic production continues to increase globally, plastic waste accumulates and degrades into smaller plastic particles. Through chemical and biological processes, nanoscale plastic particles (nanoplastics) are formed and are expected to exist in quantities of several orders of magnitude greater than those found for microplastics. Due to their small size and low mass, nanoplastics remain challenging to detect in the environment using most standard analytical methods. The goal of this research is to adapt existing tools to address the analytical challenges posed by the identification of nanoplastics. Given the unique and well-documented properties of anthropogenic plastics, we hypothesized that nanoplastics could be differentiated by polymer type using spatiotemporal deformation data collected through irradiation with scanning electron microscopy (SEM). We selected polyvinyl chloride (PVC), polyethylene terephthalate (PET), and high-density polyethylene (HDPE) to capture a range of thermodynamic properties and molecular structures encompassed by commercially available plastics. Pristine samples of each polymer type were chosen and individually milled to generate micro and nanoscale particles for SEM analysis. To test the hypothesis that polymers could be differentiated from other constituents in complex samples, the polymers were compared against proxy materials common in environmental media, i.e., algae, kaolinite clay, and nanocellulose. Samples for SEM analysis were prepared uncoated to enable observation of polymer deformation under set electron beam parameters. For each sample type, particles approximately 1 µm in diameter were chosen, and videos of particle deformation were recorded and studied. Blinded samples were also prepared with mixtures of the aforementioned materials to test the viability of this method for identifying near-nanoscale plastic particles in environmental media. Based on the evidence collected, deformation patterns between plastic particles and particles present in common environmental media show significant differences. A computer vision algorithm was also developed and tested against manual measurements to improve the usefulness and efficiency of this method further.

6.
J Hazard Mater ; 429: 128319, 2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35236035

RESUMO

Environmental sampling has documented a diversity of microplastics, including high levels of black rubber- generally identified as tire debris. Though organisms have been shown to ingest tire particles (TPs), past research focused on toxicity of leachate alone, overlooking potential effects of particles. To address these gaps, we assessed the toxicity of micro (1-20 µm) and nano (<1 µm) TPs for two model organisms, embryonic Zebrafish Danio rerio and the crustacean Daphnia magna. To assess effects on development, Zebrafish embryos were exposed to concentrations of TPs or leachate ranging from 0 to 3.0 × 109 particles/ml and 0-100% respectively (n = 4). Greater mortality and sublethal malformations were observed following nano TP and leachate exposures as compared to micro TPs. Unique abnormalities between the exposures indicates that there is both chemical and particle-specific toxicity. We also observed D. magna mortality following a 48 h exposure of neonate to TPs or leachate, ranging from 0 to 3.3 × 109 particles/ml and 0-100% respectively (n = 3). Though, particle-enhancement of toxicity was observed for both Zebrafish and D. magna, overall sensitivity to TPs differed. It is important to identify differential toxicities across species to achieve an understanding of the environmental impacts of TPs and the chemicals they leach.


Assuntos
Plásticos , Poluentes Químicos da Água , Animais , Daphnia , Água Doce , Microplásticos , Plásticos/toxicidade , Poluentes Químicos da Água/análise , Peixe-Zebra
7.
Biointerphases ; 17(6): 061003, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36347646

RESUMO

Customizable gold nanoparticle platforms are motivating innovations in drug discovery with massive therapeutic potential due to their biocompatibility, stability, and imaging capabilities. Further development requires the understanding of how discrete differences in shape, charge, or surface chemistry affect the drug delivery process of the nanoparticle. The nanoparticle shape can have a significant impact on nanoparticle function as this can, for example, drastically change the surface area available for modifications, such as surface ligand density. In order to investigate the effects of nanoparticle shape on the structure of cell membranes, we directly probed nanoparticle-lipid interactions with an interface sensitive technique termed sum frequency generation (SFG) vibrational spectroscopy. Both gold nanostars and gold nanospheres with positively charged ligands were allowed to interact with a model cell membrane and changes in the membrane structure were directly observed by specific SFG vibrational modes related to molecular bonds within the lipids. The SFG results demonstrate that the +Au nanostars both penetrated and impacted the ordering of the lipids that made up the membrane, while very little structural changes to the model membrane were observed by SFG for the +Au nanospheres interacting with the model membrane. This suggests that the +Au nanostars, compared to the +Au nanospheres, are more disruptive to a cell membrane. Our findings indicate the importance of shape in nanomaterial design and provide strong evidence that shape does play a role in defining nanomaterial-biological interactions.


Assuntos
Ouro , Nanopartículas Metálicas , Ouro/química , Nanopartículas Metálicas/química , Membrana Celular/química , Análise Espectral , Ligantes , Lipídeos/análise
8.
Nanomaterials (Basel) ; 11(6)2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34201075

RESUMO

Silver nanoparticles (AgNPs) are widely used in commerce, however, the effect of their physicochemical properties on toxicity remains debatable because of the confounding presence of Ag+ ions. Thus, we designed a series of AgNPs that are stable to surface oxidation and Ag+ ion release. AgNPs were coated with a hybrid lipid membrane comprised of L-phosphatidylcholine (PC), sodium oleate (SOA), and a stoichiometric amount of hexanethiol (HT) to produce oxidant-resistant AgNPs, Ag-SOA-PC-HT. The stability of 7-month aged, 20-100 nm Ag-SOA-PC-HT NPs were assessed using UV-Vis, dynamic light scattering (DLS), and inductively coupled plasma mass spectrometry (ICP-MS), while the toxicity of the nanomaterials was assessed using a well-established, 5-day embryonic zebrafish assay at concentrations ranging from 0-12 mg/L. There was no change in the size of the AgNPs from freshly made samples or 7-month aged samples and minimal Ag+ ion release (<0.2%) in fishwater (FW) up to seven days. Toxicity studies revealed AgNP size- and concentration-dependent effects. Increased mortality and sublethal morphological abnormalities were observed at higher concentrations with smaller nanoparticle sizes. This study, for the first time, determined the effect of AgNP size on toxicity in the absence of Ag+ ions as a confounding variable.

9.
Environ Toxicol Chem ; 40(7): 1822-1828, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33661533

RESUMO

Agglomeration of nanoplastics in waters can alter their transport and fate in the environment. Agglomeration behavior of 4 nanoplastics differing in core composition (red- or blue-dyed polystyrene) and surface chemistry (plain or carboxylated poly[methyl methacrylate] [PMMA]) was investigated across a salinity gradient. No agglomeration was observed for carboxylated PMMA at any salinity, whereas the plain PMMA agglomerated at only 1 g/L. Both the red and the blue polystyrene agglomerated at 25 g/L. Results indicate that both composition and surface chemistry can impact how environmental salinity affects plastic nanoparticle agglomeration. Environ Toxicol Chem 2021;40:1822-1828. © 2021 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Microplásticos , Poluentes Químicos da Água , Ecotoxicologia , Poliestirenos/química , Salinidade , Poluentes Químicos da Água/análise
10.
Nanomaterials (Basel) ; 11(1)2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33418857

RESUMO

Lignin is the second most abundant biopolymer on Earth after cellulose. Since lignin breaks down in the environment naturally, lignin nanoparticles may serve as biodegradable carriers of biocidal actives with minimal environmental footprint compared to conventional antimicrobial formulations. Here, a lignin nanoparticle (LNP) coated with chitosan was engineered. Previous studies show both lignin and chitosan to exhibit antimicrobial properties. Another study showed that adding a chitosan coating can improve the adsorption of LNPs to biological samples by electrostatic adherence to oppositely charged surfaces. Our objective was to determine if these engineered particles would elicit toxicological responses, utilizing embryonic zebrafish toxicity assays. Zebrafish were exposed to nanoparticles with an intact chorionic membrane and with the chorion enzymatically removed to allow for direct contact of particles with the developing embryo. Both mortality and sublethal endpoints were analyzed. Mortality rates were significantly greater for chitosan-coated LNPs (Ch-LNPs) compared to plain LNPs and control groups. Significant sublethal endpoints were observed in groups exposed to Ch-LNPs with chorionic membranes intact. Our study indicated that engineered Ch-LNP formulations at high concentrations were more toxic than plain LNPs. Further study is warranted to fully understand the mechanisms of Ch-LNP toxicity.

11.
ACS Appl Mater Interfaces ; 13(16): 19497-19506, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33856779

RESUMO

Polyoxometalate (POM)-based ionic liquids, with nearly infinite compositional variations to fine-tune antimicrobial and physical properties, function as water purification filters, anticorrosion/antibacterial coatings for natural stones, self-repairing acid-resistant coatings, catalysts, and electroactive, stable solvents. By combining hydrophobic quaternary ammonium cations (QACs; tetraheptylammonium and trihexyltetradecylammonium) with butyltin-substituted polyoxotungstates [(BuSn)3(α-SiW9O37)] via repeated solvent extraction-ion exchange, we obtained phase-pure hybrid POM salts (referred to as such because they melt above room temperature). If the solvent extraction process is performed only once, then solids with high salt contamination and considerably lower melting temperatures are obtained. Solution-phase behavior, based on POM-QAC interactions, was similar for all formulations in polar and nonpolar organic solvents, as observed by X-ray scattering and multinuclear magnetic resonance spectroscopy. However, solid thin films of the butyltin-functionalized hybrid POM salts were significantly more stable and adhesive than their inorganic analogues. We attribute this to the favorable hydrophobic interactions between the butyltin groups and the QACs. All synthesized hybrid POM salts display a potent antimicrobial activity toward Escherichia coli. These studies provide fundamental form-function understanding of hybrid POM salts, based on interactions between ions in these complex hybrid phases.

12.
J Fungi (Basel) ; 7(2)2021 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-33671668

RESUMO

Spalting fungal pigments have shown potential in technologies ranging from green energy generation to natural colorants. However, their unknown toxicity has been a barrier to industrial adoption. In order to gain an understanding of the safety of the pigments, zebrafish embryos were exposed to multiple forms of liquid media and solvent-extracted pigments with concentrations of purified pigment ranging from 0 to 50 mM from Chlorociboria aeruginosa, Chlorociboria aeruginascens, and Scytalidium cuboideum. Purified xylindein from Chlorociboria sp. did not show toxicity at any tested concentration, while the red pigment dramada from S. cuboideum was only associated with significant toxicity above 23.2 uM. However, liquid cultures and pigment extracted into dichloromethane (DCM) showed toxicity, suggesting the co-production of bioactive secondary metabolites. Future research on purification and the bioavailability of the red dramada pigment will be important to identify appropriate use; however, purified forms of the blue-green pigment xylindein are likely safe for use across industries. This opens the door to the adoption of green technologies based on these pigments, with potential to replace synthetic colorants and less stable natural pigments.

13.
Nanomaterials (Basel) ; 11(4)2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33921179

RESUMO

An optimal methodology for locating and tracking cellulose nanofibers (CNFs) in vitro and in vivo is crucial to evaluate the environmental health and safety properties of these nanomaterials. Here, we report the use of a new boron-dipyrromethene (BODIPY) reactive fluorescent probe, meso-DichlorotriazineEthyl BODIPY (mDTEB), tailor-made for labeling CNFs used in simulated or in vivo ingestion exposure studies. Time-correlated single photon counting (TCSPC) fluorescence lifetime imaging microscopy (FLIM) was used to confirm covalent attachment and purity of mDTEB-labeled CNFs. The photoluminescence properties of mDTEB-labeled CNFs, characterized using fluorescence spectroscopy, include excellent stability over a wide pH range (pH2 to pH10) and high quantum yield, which provides detection at low (µM) concentrations. FLIM analysis also showed that lignin-like impurities present on the CNF reduce the fluorescence of the mDTEB-labeled CNF, via quenching. Therefore, the chemical composition and the methods of CNF production affect subsequent studies. An in vitro triculture, small intestinal, epithelial model was used to assess the toxicity of ingested mDTEB-labeled CNFs. Zebrafish (Danio rerio) were used to assess in vivo environmental toxicity studies. No cytotoxicity was observed for CNFs, or mDTEB-labeled CNFs, either in the triculture cells or in the zebrafish embryos.

14.
Int J Occup Environ Health ; 16(4): 467-74, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21222390

RESUMO

Given the development of nanotechnology within numerous scientific disciplines, it is likely that nanoscale products have been and will be used for agricultural, vector, and urban pest control prior to a complete evaluation of exposure and risk. Significant differences may exist between nanotechnology-based pesticides (NBPs) and conventional pesticides, primarily due to size and surface characteristics. These differences may result in changes in bioavailability, sensitivity, dosimetry, and pharmacokinetics. This paper considers the role of exposure assessment in the regulation of NBPs. While the existing regulatory infrastructure for pesticides is well established, several issues specific to NBP exposure are discussed, including: (1) disclosures of nanoparticle characteristics in product formulations; (2) additional uncertainty factors for NBPs with inadequate data; (3) route-specific approaches for assessing exposure; (4) testing with the commercial form of NBPs; (5) initiation of a health surveillance program; and (6) development of educational programs.


Assuntos
Exposição Ambiental/análise , Nanopartículas/análise , Praguicidas/análise , Agricultura , Poluentes Ocupacionais do Ar/análise , Humanos , Exposição Ocupacional/análise
15.
Environ Sci Nano ; 7(1): 105-115, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32391155

RESUMO

Copper based nanoparticles (NPs) are used extensively in industrial and commercial products as sensors, catalysts, surfactants, antimicrobials, and for other purposes. The high production volume and increasing use of copper-based NPs make their ecological risk a concern. Commonly used copper-based NPs are composed of metallic copper or copper oxide (Cu and CuO NPs); however, their environmental toxicity can vary dramatically depending on their physico-chemical properties, such as dissolution, aggregation behavior, and the generation of reactive oxygen species. Here, we investigated the NP dissolution, organismal uptake and aquatic toxicity of Cu and CuO NPs at 0, 0.1, 1, 5 or 10 mg Cu/L using a previously developed multi-species microcosm. This 5-day microcosm assay was comprised of C. reinhardtti, E. coli, D. magna, and D. rerio. We hypothesized that Cu and CuO NPs can elicit differential toxicity to the organisms due to alterations in particle dissolution and variations in organismal uptake. The actual concentrations of dissolved Cu released from the NPs were compared to ionic copper controls (CuCl2) at the same concentrations to determine the relative contribution of particulate and dissolved Cu on organism uptake and toxicity. We found that both NPs had higher uptake in D. magna and zebrafish than equivalent ionic exposures, suggesting that both Cu-based NPs are taken up by organisms. Cu NP exposures significantly inhibited algal growth rate, D. magna survival, and zebrafish hatching while exposure to equivalent concentrations of CuCl2 (dissolved Cu fraction) and CuO NPs did not. This indicates that Cu NPs themselves likely elicited a particle-specific mechanism of toxicity to the test organisms, or a combination effect from ionic Cu and the Cu NPs. Overall, this work was the first study to utilize a small-scale rapid assay designed to evaluate the fate and ecotoxicological impacts of Cu and CuO NPs in a mixed aquatic community.

16.
PLoS One ; 15(6): e0233844, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32492068

RESUMO

The hydrophobicity of nanoparticles (NPs) is a key property determining environmental fate, biological partitioning and toxicity. However, methods to characterize surface hydrophobicity are not uniformly applied to NPs and cannot quantify surface changes in complex environments. Existing methods designed to evaluate the hydrophobicity of bulk solids, chemicals, and proteins have significant limitations when applied to NPs. In this study, we modified and evaluated two methods to determine the hydrophobicity of NPs, hydrophobic interaction chromatography (HIC) and dye adsorption, and compared them to the standard octanol-water partitioning protocol for chemicals. Gold, copper oxide, silica, and amine-functionalized silica NPs were used to evaluate methods based on their applicability to NPs that agglomerate and have surface coatings. The octanol water partitioning and HIC methods both measured Au NPs as hydrophilic, but despite having a small size and stable suspension, NPs could not be fully recovered from the HIC column. For the dye adsorption method, hydrophobic (Rose Bengal) and hydrophilic (Nile Blue) dyes were adsorbed to the NP surface, and linear isotherm parameters were used as a metric for hydrophobicity. CuO was determined to be slightly hydrophilic, while SiO2 was hydrophilic and Ami-SiO2 was hydrophobic. The advantages and limitations of each method are discussed, and the dye adsorption method is recommended as the most suitable for application across broad classes of nanomaterials. The dye assay method was further used to measure changes in the surface hydrophobicity of TiO2 NPs after being suspended in natural water collected from the Alsea Rivers watershed in Oregon. TiO2 NPs adsorbed Rose Bengal when suspended in ultrapure water, but adsorbed Nile Blue after being incubated in natural water samples, demonstrating a shift from hydrophobic to hydrophilic properties on the outer surface. The dye adsorption method can be applied to characterize surface hydrophobicity of NPs and quantify environmental transformations, potentially improving environmental fate models.


Assuntos
Cromatografia/métodos , Corantes Fluorescentes/química , Interações Hidrofóbicas e Hidrofílicas , Nanopartículas/química , Oxazinas/química , Rosa Bengala/química , Espectrometria de Fluorescência/métodos , Adsorção , Cobre/química , Ouro/química , Dióxido de Silício/química , Propriedades de Superfície
17.
Nanomaterials (Basel) ; 9(1)2019 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-30634410

RESUMO

Given the costs associated with designing novel active ingredients, new formulations focus on the use of other ingredients to modify existing formulations. Nanosized encapsulated pesticides offer a variety of enhanced features including controlled release and improved efficacy. Despite the presence of nanosized capsules in current-use pesticide formulations, the analytical and toxicological implications of encapsulation are uncertain. To explore this issue quantitatively, we fractionated the capsules of a commercially available encapsulated insecticide formulation (γ-cyhalothrin active ingredient) into two size ranges: a large fraction (LF), with an average hydrodynamic diameter (HDD) of 758 nm, and a small fraction (SF), with an average HDD of 449 nm. We developed a novel extraction method demonstrating a time-dependent inhibition of γ-cyhalothrin from capsules for up to 48 h. An acute immobilization test with a freshwater macroinvertebrate (Ceriodaphnia dubia) revealed that the SF was significantly more toxic than both the LF and the free γ-cyhalothrin treatment (EC50 = 0.18 µg/L, 0.57 µg/L, and 0.65 µg/L, respectively). These findings highlight that encapsulation of γ-cyhalothrin mitigates hydrophobic partitioning in a time-dependent manner and influences toxicity in a size-dependent manner. Recognizing the analytical and toxicological nuances of various nanosized capsules can contribute to innovation in pesticide formulations and may lead to more comprehensive pesticide regulation.

18.
Environ Toxicol Chem ; 38(3): 591-602, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30615210

RESUMO

Potential differences in species susceptibility to nanoparticle (NP) contaminants make the use of multispecies community toxicity testing strategies beneficial in understanding NP risk to aquatic environments. Because of the limited knowledge of zinc oxide (ZnO) NP fate and toxicity, we conducted multispecies exposures and compared the responses of individual species to the same species in a community comprised of algae (Chlamydomonas reinhardtii), bacteria (Escherichia coli), crustaceans (Daphnia magna), and zebrafish (Danio rerio). Different-sized ZnO particles and ionic Zn were compared to investigate the contribution of particulate and dissolved Zn to aquatic organism toxicity. Each organism and community was exposed to Zn sources at 0.08, 0.8, and 8 mg Zn/L. The present results indicate that all 3 types of Zn elicited differential toxicity among test organisms, with stronger adverse outcomes observed in single species than within a community. The community assay (nanocosm) we developed increased resilience to all Zn exposures by 5 to 10% compared to individual exposures at equivalent concentrations. In addition, the uptake and toxicity of ZnO particles to aquatic communities appear to be driven by rapid dissolution and the concomitant impacts of zinc ion toxicity, and the size of the ZnO particles had little impact on uptake or toxicity. The nanocosm assay could be a useful screening tool for rapidly assessing the potential impacts of nanomaterials to aquatic species. Environ Toxicol Chem 2019;38:591-602. © 2019 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.


Assuntos
Nanopartículas Metálicas/toxicidade , Poluentes Químicos da Água/toxicidade , Óxido de Zinco/toxicidade , Animais , Chlamydomonas reinhardtii/efeitos dos fármacos , Daphnia/efeitos dos fármacos , Daphnia/metabolismo , Nanopartículas Metálicas/química , Tamanho da Partícula , Solubilidade , Testes de Toxicidade , Poluentes Químicos da Água/química , Poluentes Químicos da Água/metabolismo , Peixe-Zebra/metabolismo , Óxido de Zinco/química , Óxido de Zinco/metabolismo
19.
Environ Toxicol Chem ; 38(12): 2651-2658, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31441966

RESUMO

Recently, monoalkyl oxo-hydroxo tin clusters have emerged as a new class of metal-oxide resist to support the semiconductor industry's transition to extreme ultraviolet (EUV) lithography. Under EUV exposure, these tin-based clusters exhibit higher performance and wider process windows than conventional polymer materials. A promising new monoalkyl precursor, [(BuSn)12 O14 (OH)6 ][OH]2 (BuSn), is still in its infancy in terms of film formation. However, understanding potential environmental effects could significantly affect future development as a commercial product. We synthesized and explored the toxicity of nano-BuSn in the alga Chlamydomonas reinhardtii and the crustacean Daphnia magna at exposure concentrations ranging from 0 to 250 mg/L. Nano-BuSn had no effect on C. reinhardtii growth rate irrespective of concentration, whereas high nanoparticle concentrations (≥100 mg/L) increased D. magna immobilization and mortality significantly. To simulate an end-of-life disposal and leachate contamination, BuSn-coated film wafers were incubated in water at various pH values and temperatures for 14 and 90 d to investigate leaching rates and subsequent toxicity of the leachates. Although small quantities of tin (1.1-3.4% of deposited mass) leached from the wafers, it was insufficient to elicit a toxic response regardless of pH, incubation time, or temperature. The low toxicity of the tin-based thin films suggests that they can be an environmentally friendly addition to the material sets useful for semiconductor manufacturing. Environ Toxicol Chem 2019;38:2651-2658. © 2019 SETAC.


Assuntos
Chlamydomonas/efeitos dos fármacos , Daphnia/efeitos dos fármacos , Estanho/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Chlamydomonas/crescimento & desenvolvimento , Daphnia/crescimento & desenvolvimento , Óxidos/análise , Óxidos/toxicidade , Estanho/análise , Poluentes Químicos da Água/análise
20.
Environ Sci Nano ; 5(6): 1473-1481, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30455956

RESUMO

Determining the specific nanomaterial features that elicit adverse biological responses is important to inform risk assessments, develop targeted applications, and rationally design future nanomaterials. Embryonic zebrafish are often employed to study nanomaterial-biological interactions, but few studies address the role of the chorion in nanomaterial exposure and toxicity. Here, we used chorion-intact (CI) or dechorionated (DC) embryonic zebrafish to investigate the influence of the chorion on copper-based nanoparticle toxicity. We found that despite higher dissolution and uptake, CuO NPs were less toxic than Cu NPs regardless of chorion status and did not cause 100 % mortality at even the highest exposure concentration. The presence of the chorion inhibited Cu toxicity: DC exposures to Cu NPs had an LC50 of 2.5 ± 0.3 mg/L compared to a CI LC50 of 13.7 ± 0.8 mg/L. This highlights the importance of considering zebrafish chorion status during nanotoxicological investigations, as embryo sensitivity increased by one order of magnitude or more when chorions were removed. Agglomerate size, zeta potential, and dissolved Cu did not sufficiently explain the differences in toxicity between Cu NPs and CuO NPs; however, reactive oxygen species (ROS) generation did. Cu NPs generated ROS in a concentration-dependent manner, while CuO did not and generated less than Cu NPs. We believe that the differences between the toxicities of Cu NPs and CuO NPs are due in part to their ability to generate ROS which could and should be a hazard consideration for risk assessments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA