Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 280
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 619(7968): 143-150, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37380764

RESUMO

Caloric restriction that promotes weight loss is an effective strategy for treating non-alcoholic fatty liver disease and improving insulin sensitivity in people with type 2 diabetes1. Despite its effectiveness, in most individuals, weight loss is usually not maintained partly due to physiological adaptations that suppress energy expenditure, a process known as adaptive thermogenesis, the mechanistic underpinnings of which are unclear2,3. Treatment of rodents fed a high-fat diet with recombinant growth differentiating factor 15 (GDF15) reduces obesity and improves glycaemic control through glial-cell-derived neurotrophic factor family receptor α-like (GFRAL)-dependent suppression of food intake4-7. Here we find that, in addition to suppressing appetite, GDF15 counteracts compensatory reductions in energy expenditure, eliciting greater weight loss and reductions in non-alcoholic fatty liver disease (NAFLD) compared to caloric restriction alone. This effect of GDF15 to maintain energy expenditure during calorie restriction requires a GFRAL-ß-adrenergic-dependent signalling axis that increases fatty acid oxidation and calcium futile cycling in the skeletal muscle of mice. These data indicate that therapeutic targeting of the GDF15-GFRAL pathway may be useful for maintaining energy expenditure in skeletal muscle during caloric restriction.


Assuntos
Metabolismo Energético , Fator 15 de Diferenciação de Crescimento , Músculo Esquelético , Redução de Peso , Animais , Humanos , Camundongos , Depressores do Apetite/metabolismo , Depressores do Apetite/farmacologia , Depressores do Apetite/uso terapêutico , Restrição Calórica , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica , Ingestão de Alimentos/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Fator 15 de Diferenciação de Crescimento/metabolismo , Fator 15 de Diferenciação de Crescimento/farmacologia , Fator 15 de Diferenciação de Crescimento/uso terapêutico , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/terapia , Receptores Adrenérgicos beta/metabolismo , Redução de Peso/efeitos dos fármacos
2.
J Biol Chem ; 300(2): 105626, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38211818

RESUMO

Mitochondrial electron transport chain complexes organize into supramolecular structures called respiratory supercomplexes (SCs). The role of respiratory SCs remains largely unconfirmed despite evidence supporting their necessity for mitochondrial respiratory function. The mechanisms underlying the formation of the I1III2IV1 "respirasome" SC are also not fully understood, further limiting insights into these processes in physiology and diseases, including neurodegeneration and metabolic syndromes. NDUFB4 is a complex I accessory subunit that contains residues that interact with the subunit UQCRC1 from complex III, suggesting that NDUFB4 is integral for I1III2IV1 respirasome integrity. Here, we introduced specific point mutations to Asn24 (N24) and Arg30 (R30) residues on NDUFB4 to decipher the role of I1III2-containing respiratory SCs in cellular metabolism while minimizing the functional consequences to complex I assembly. Our results demonstrate that NDUFB4 point mutations N24A and R30A impair I1III2IV1 respirasome assembly and reduce mitochondrial respiratory flux. Steady-state metabolomics also revealed a global decrease in citric acid cycle metabolites, affecting NADH-generating substrates. Taken together, our findings highlight an integral role of NDUFB4 in respirasome assembly and demonstrate the functional significance of SCs in regulating mammalian cell bioenergetics.


Assuntos
Complexo I de Transporte de Elétrons , Mitocôndrias , Transporte de Elétrons , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/genética , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Metabolismo Energético , Mitocôndrias/genética , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Humanos , Células HEK293
3.
Appetite ; 202: 107637, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39208478

RESUMO

Sugar-sweetened beverages (SSB) are a health policy target. Indigenous populations are among the highest consumers of SSB in Canada. However, the Truth and Reconciliation Commission calls on governments to recognize health disparities among Indigenous populations as a consequence of colonialism and governmental policies. The purpose of this analysis was to explore emergent perspectives of Indigenous adults on experiences and perspectives of SSB consumption. We conducted a community-based participatory study in partnership with three Indigenous-led organizations. From 2019 to 2022, we completed qualitative interviews with Indigenous adults living in Island Lake Anisininew First Nation, Flin Flon, and Winnipeg's North End, a neighbourhood with high concentration of Indigenous people. Interviews were audio-recorded, transcribed verbatim, and analyzed thematically. Seventy-four adults participated in interviews, including 46 women, 26 men, and two identifying as two-spirit. Many participants, across all three locations, repeatedly and consistently described SSB or sugar as an addiction, which formed the primary theme for this analysis: addictive-like consumption of SSB. Addictive-like SSB consumption included comparison to other addictive substances, loss of control, and physical symptoms resulting from SSB intake (both positive and adverse) or attempting to reduce SSB intake. We identified two other secondary themes, i) perceived drivers and contexts of SSB consumption, and ii) health outcomes as a motivator for change. Perceived drivers or contexts included consuming SSB as a means to cope with stress, boredom, and poverty; SSB intake as being intertwined with other addictions or addictive substances; and drinking alone. In conclusion, addictive-like SSB consumption was reported by Indigenous adults. To address SSB intake among Indigenous populations, trauma-informed approaches should be explored that consider the colonial context.


Assuntos
Canadenses Indígenas , Bebidas Adoçadas com Açúcar , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Comportamento Aditivo/psicologia , Pesquisa Participativa Baseada na Comunidade , Canadenses Indígenas/psicologia , Manitoba , Pesquisa Qualitativa
4.
Am J Physiol Endocrinol Metab ; 325(2): E107-E112, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37315156

RESUMO

A person's metabolic rate corresponds to the whole body level sum of all oxidative reactions occurring on the cellular level. The energy expenditure (EE) can be categorized into various obligatory and facultative processes. In sedentary adults, basal metabolic rate is the largest contributor to total daily EE, and interindividual variability can be significant. Additional EE is required for digesting and metabolizing food, thermoregulatory adaptation to cold, and to support exercise and nonexercise body movements. Interindividual variability also exists for these EE processes, even after controlling for known factors. The complex mechanisms of interindividual variability in EE can have genetic and environmental origins and require further investigation. Exploration of interindividual variability in EE and its underlying factors holds importance to metabolic health, as it may predict disease risk, and be useful in the personalization of preventative and treatment strategies.


Assuntos
Metabolismo Basal , Metabolismo Energético , Adulto , Humanos , Exercício Físico , Regulação da Temperatura Corporal , Adaptação Fisiológica
5.
Am J Physiol Endocrinol Metab ; 325(4): E291-E302, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37584609

RESUMO

Insulin resistance and blunted mitochondrial capacity in skeletal muscle are often synonymous, however, this association remains controversial. The aim of this study was to perform an in-depth multifactorial comparison of skeletal muscle mitochondrial capacity between individuals who were lean and active (Active, n = 9), individuals with obesity (Obese, n = 9), and individuals with obesity, insulin resistance, and type 2 diabetes (T2D, n = 22). Mitochondrial capacity was assessed by ex vivo mitochondrial respiration with fatty-acid and glycolytic-supported protocols adjusted for mitochondrial content (mtDNA and citrate synthase activity). Supercomplex assembly was measured by Blue Native (BN)-PAGE and immunoblot. Tricarboxylic (TCA) cycle intermediates were assessed with targeted metabolomics. Exploratory transcriptomics and DNA methylation analyses were performed to uncover molecular differences affecting mitochondrial function among the three groups. We reveal no discernable differences in skeletal muscle mitochondrial content, mitochondrial capacity, supercomplex assembly, TCA cycle intermediates, and mitochondrial molecular profiles between obese individuals with and without T2D that had comparable levels of confounding factors (body mass index, age, and aerobic capacity). We highlight that lean, active individuals have greater mitochondrial content, mitochondrial capacity, supercomplex assembly, and TCA cycle intermediates. These phenotypical changes are reflected at the level of DNA methylation and gene transcription. The collective observation of comparable muscle mitochondrial capacity in individuals with obesity and T2D (vs. individuals without T2D) underscores a dissociation from skeletal muscle insulin resistance. Clinical trial number: NCT01911104.NEW & NOTEWORTHY Whether impaired mitochondrial capacity contributes to skeletal muscle insulin resistance is debated. Our multifactorial analysis shows no differences in skeletal muscle mitochondrial content, mitochondrial capacity, and mitochondrial molecular profiles between obese individuals with and without T2D that had comparable levels of confounding factors (BMI, age, aerobic capacity). We highlight that lean, active individuals have enhanced skeletal muscle mitochondrial capacity that is also reflected at the level of DNA methylation and gene transcription.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Humanos , Resistência à Insulina/fisiologia , Diabetes Mellitus Tipo 2/metabolismo , Mitocôndrias , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Mitocôndrias Musculares/metabolismo
6.
PLoS Genet ; 16(11): e1009220, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33253187

RESUMO

Cellular metabolism is tightly regulated by many signaling pathways and processes, including lysine acetylation of proteins. While lysine acetylation of metabolic enzymes can directly influence enzyme activity, there is growing evidence that lysine acetylation can also impact protein localization. As the Saccharomyces cerevisiae lysine acetyltransferase complex NuA4 has been implicated in a variety of metabolic processes, we have explored whether NuA4 controls the localization and/or protein levels of metabolic proteins. We performed a high-throughput microscopy screen of over 360 GFP-tagged metabolic proteins and identified 23 proteins whose localization and/or abundance changed upon deletion of the NuA4 scaffolding subunit, EAF1. Within this, three proteins were required for glycogen synthesis and 14 proteins were associated with the mitochondria. We determined that in eaf1Δ cells the transcription of glycogen biosynthesis genes is upregulated resulting in increased proteins and glycogen production. Further, in the absence of EAF1, mitochondria are highly fused, increasing in volume approximately 3-fold, and are chaotically distributed but remain functional. Both the increased glycogen synthesis and mitochondrial elongation in eaf1Δ cells are dependent on Bcy1, the yeast regulatory subunit of PKA. Surprisingly, in the absence of EAF1, Bcy1 localization changes from being nuclear to cytoplasmic and PKA activity is altered. We found that NuA4-dependent localization of Bcy1 is dependent on a lysine residue at position 313 of Bcy1. However, the glycogen accumulation and mitochondrial elongation phenotypes of eaf1Δ, while dependent on Bcy1, were not fully dependent on Bcy1-K313 acetylation state and subcellular localization of Bcy1. As NuA4 is highly conserved with the human Tip60 complex, our work may inform human disease biology, revealing new avenues to investigate the role of Tip60 in metabolic diseases.


Assuntos
Histona Acetiltransferases/metabolismo , Mitocôndrias/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Acetilação , Glicogênio/biossíntese , Histona Acetiltransferases/genética , Lisina/metabolismo , Dinâmica Mitocondrial/genética , Processamento de Proteína Pós-Traducional , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Deleção de Sequência
7.
Clin Sci (Lond) ; 136(14): 1081-1110, 2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35892309

RESUMO

Metabolic demands of skeletal muscle are substantial and are characterized normally as highly flexible and with a large dynamic range. Skeletal muscle composition (e.g., fiber type and mitochondrial content) and metabolism (e.g., capacity to switch between fatty acid and glucose substrates) are altered in obesity, with some changes proceeding and some following the development of the disease. Nonetheless, there are marked interindividual differences in skeletal muscle composition and metabolism in obesity, some of which have been associated with obesity risk and weight loss capacity. In this review, we discuss related molecular mechanisms and how current and novel treatment strategies may enhance weight loss capacity, particularly in diet-resistant obesity.


Assuntos
Músculo Esquelético , Obesidade , Ácidos Graxos/metabolismo , Humanos , Mitocôndrias/metabolismo , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Redução de Peso/fisiologia
8.
FASEB J ; 35(5): e21544, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33819356

RESUMO

Serine-rich splicing factor 3 (SRSF3) was recently reported as being necessary to preserve RNA stability via an mTOR mechanism in a cardiac mouse model in adulthood. Here, we demonstrate the link between Srsf3 and mitochondrial integrity in an embryonic cardiomyocyte-specific Srsf3 conditional knockout (cKO) mouse model. Fifteen-day-old Srsf3 cKO mice showed dramatically reduced (below 50%) survival and reduced the left ventricular systolic performance, and histological analysis of these hearts revealed a significant increase in cardiomyocyte size, confirming the severe remodeling induced by Srsf3 deletion. RNA-seq analysis of the hearts of 5-day-old Srsf3 cKO mice revealed early changes in expression levels and alternative splicing of several transcripts related to mitochondrial integrity and oxidative phosphorylation. Likewise, the levels of several protein complexes of the electron transport chain decreased, and mitochondrial complex I-driven respiration of permeabilized cardiac muscle fibers from the left ventricle was impaired. Furthermore, transmission electron microscopy analysis showed disordered mitochondrial length and cristae structure. Together with its indispensable role in the physiological maintenance of mouse hearts, these results highlight the previously unrecognized function of Srsf3 in regulating the mitochondrial integrity.


Assuntos
Regulação da Expressão Gênica , Mitocôndrias Cardíacas/patologia , Miócitos Cardíacos/patologia , Fatores de Processamento de Serina-Arginina/fisiologia , Processamento Alternativo , Animais , Perfilação da Expressão Gênica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias Cardíacas/metabolismo , Miócitos Cardíacos/metabolismo , Fosforilação Oxidativa , RNA-Seq
9.
Circulation ; 142(23): 2240-2258, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33070627

RESUMO

BACKGROUND: Cardiac hypertrophy is a key biological response to injurious stresses such as pressure overload and, when excessive, can lead to heart failure. Innate immune activation by danger signals, through intracellular pattern recognition receptors such as nucleotide-binding oligomerization domain 1 (Nod1) and its adaptor receptor-interacting protein 2 (RIP2), might play a major role in cardiac remodeling and progression to heart failure. We hypothesize that Nod1/RIP2 are major contributors to cardiac hypertrophy, but may not be sufficient to fully express the phenotype alone. METHODS: To elucidate the contribution of Nod1/RIP2 signaling to cardiac hypertrophy, we randomized Nod1-/-, RIP2-/-, or wild-type mice to transverse aortic constriction or sham operations. Cardiac hypertrophy, fibrosis, and cardiac function were examined in these mice. RESULTS: Nod1 and RIP2 proteins were upregulated in the heart after transverse aortic constriction, and this was paralleled by increased expression of mitochondrial proteins, including mitochondrial antiviral signaling protein (MAVS). Nod1-/- and RIP2-/- mice subjected to transverse aortic constriction exhibited better survival, improved cardiac function, and decreased cardiac hypertrophy. Downstream signal transduction pathways that regulate inflammation and fibrosis, including NF (nuclear factor) κB and MAPK (mitogen-activated protein kinase)-GATA4/p300, were reduced in both Nod1-/- and RIP2-/- mice after transverse aortic constriction compared with wild-type mice. Coimmunoprecipitation of extracted cardiac proteins and confocal immunofluorescence microscopy showed that Nod1/RIP2 interaction was robust and that this complex also included MAVS as an essential component. Suppression of MAVS expression attenuated the complex formation, NF κB signaling, and myocyte hypertrophy. Interrogation of mitochondrial function compared in the presence or ablation of MAVS revealed that MAVS serves to suppress mitochondrial energy output and mediate fission/fusion related dynamic changes. The latter is possibly linked to mitophagy during cardiomyocytes stress, which may provide an intriguing link between innate immune activation and mitochondrial energy balance under stress or injury conditions. CONCLUSIONS: We have identified that innate immune Nod1/RIP2 signaling is a major contributor to cardiac remodeling after stress. This process is critically joined by and regulated through the mitochondrial danger signal adapter MAVS. This novel complex coordinates remodeling, inflammatory response, and mitochondrial energy metabolism in stressed cardiomyocytes. Thus, Nod1/RIP2/MAVS signaling complex may represent an attractive new therapeutic approach toward heart failure.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/imunologia , Cardiomegalia/imunologia , Metabolismo Energético/fisiologia , Imunidade Inata/fisiologia , Proteína Adaptadora de Sinalização NOD1/imunologia , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/imunologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Animais Recém-Nascidos , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/imunologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Camundongos , Camundongos Knockout , Proteína Adaptadora de Sinalização NOD1/metabolismo , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/metabolismo , Transdução de Sinais/fisiologia
10.
Am J Physiol Endocrinol Metab ; 320(5): E864-E873, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33645254

RESUMO

Regular exercise has profound metabolic influence on the liver, but effects on bile acid (BA) metabolism are less well known. BAs are synthesized exclusively in the liver from cholesterol via the rate-limiting enzyme cholesterol 7 alpha-hydroxylase (CYP7A1). BAs contribute to the solubilization and absorption of lipids and serve as important signaling molecules, capable of systemic endocrine function. Circulating BAs increase with obesity and insulin resistance, but effects following exercise and diet-induced weight loss are unknown. To test if improvements in fitness and weight loss as a result of exercise training enhance BA metabolism, we measured serum concentrations of total BAs (conjugated and unconjugated primary and secondary BAs) in sedentary, obese, insulin-resistant women (N = 11) before (PRE) and after (POST) a ∼14-wk exercise and diet-induced weight loss intervention. BAs were measured in serum collected after an overnight fast and during an oral glucose tolerance test (OGTT). Serum fibroblast growth factor 19 (FGF19; a regulator of BA synthesis) and 7-alpha-hydroxy-cholesten-3-one (C4, a marker of CYP7A1 enzymatic activity) also were measured. Using linear mixed-model analyses and the change in V̇O2peak (mL/min/kg) as a covariate, we observed that exercise and weight loss intervention decreased total fasting serum BA by ∼30% (P = 0.001) and increased fasting serum C4 concentrations by 55% (P = 0.004). C4 was significantly correlated with serum total BAs only in the POST condition, whereas serum FGF19 was unchanged. These data indicate that a fitness and weight loss intervention modifies BA metabolism in obese women and suggest that improved metabolic health associates with higher postabsorptive (fasting) BA synthesis. Furthermore, pre- vs. postintervention patterns of serum C4 following an OGTT support the hypothesis that responsiveness of BA synthesis to postprandial inhibition is improved after exercise and weight loss.NEW & NOTEWORTHY Exercise and weight loss in previously sedentary, insulin-resistant women facilitates a significant improvement in insulin sensitivity and fitness that may be linked to changes in bile acid metabolism. Diet-induced weight loss plus exercise-induced increases in fitness promote greater postabsorptive bile acid synthesis while also sensitizing the bile acid metabolic system to feedback inhibition during a glucose challenge when glucose and insulin are elevated.


Assuntos
Ácidos e Sais Biliares/metabolismo , Biomarcadores/sangue , Exercício Físico/fisiologia , Obesidade/metabolismo , Redução de Peso/fisiologia , Adulto , Ácidos e Sais Biliares/biossíntese , Ácidos e Sais Biliares/sangue , Biomarcadores/metabolismo , Glicemia/metabolismo , Dieta Redutora , Terapia por Exercício , Feminino , Humanos , Resistência à Insulina/fisiologia , Fígado/metabolismo , Pessoa de Meia-Idade , Obesidade/sangue , Obesidade/terapia , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA