Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
PLoS Genet ; 8(12): e1003095, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23284290

RESUMO

Sensitivity to pain varies considerably between individuals and is known to be heritable. Increased sensitivity to experimental pain is a risk factor for developing chronic pain, a common and debilitating but poorly understood symptom. To understand mechanisms underlying pain sensitivity and to search for rare gene variants (MAF<5%) influencing pain sensitivity, we explored the genetic variation in individuals' responses to experimental pain. Quantitative sensory testing to heat pain was performed in 2,500 volunteers from TwinsUK (TUK): exome sequencing to a depth of 70× was carried out on DNA from singletons at the high and low ends of the heat pain sensitivity distribution in two separate subsamples. Thus in TUK1, 101 pain-sensitive and 102 pain-insensitive were examined, while in TUK2 there were 114 and 96 individuals respectively. A combination of methods was used to test the association between rare variants and pain sensitivity, and the function of the genes identified was explored using network analysis. Using causal reasoning analysis on the genes with different patterns of SNVs by pain sensitivity status, we observed a significant enrichment of variants in genes of the angiotensin pathway (Bonferroni corrected p = 3.8×10(-4)). This pathway is already implicated in animal models and human studies of pain, supporting the notion that it may provide fruitful new targets in pain management. The approach of sequencing extreme exome variation in normal individuals has provided important insights into gene networks mediating pain sensitivity in humans and will be applicable to other common complex traits.


Assuntos
Angiotensinas , Exoma/genética , Redes Reguladoras de Genes , Dor , Adulto , Angiotensinas/genética , Angiotensinas/metabolismo , Sequência de Bases , Regulação da Expressão Gênica , Predisposição Genética para Doença , Temperatura Alta , Humanos , Masculino , Dor/genética , Dor/fisiopatologia , Limiar da Dor , Sensibilidade e Especificidade , Análise de Sequência de DNA , Transdução de Sinais
2.
Drug Discov Today ; 27(5): 1441-1447, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35066138

RESUMO

Over recent years, there has been exciting growth in collaboration between academia and industry in the life sciences to make data more Findable, Accessible, Interoperable and Reusable (FAIR) to achieve greater value. Despite considerable progress, the transformative shift from an application-centric to a data-centric perspective, enabled by FAIR implementation, remains very much a work in progress on the 'FAIR journey'. In this review, we consider use cases for FAIR implementation. These can be deployed alongside assessment of data quality to maximize the value of data generated from research, clinical trials, and real-world healthcare data, which are essential for the discovery and development of new medical treatments by biopharma.


Assuntos
Disciplinas das Ciências Biológicas , Confiabilidade dos Dados , Indústrias
3.
Database (Oxford) ; 20222022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35616100

RESUMO

Despite progress in the development of standards for describing and exchanging scientific information, the lack of easy-to-use standards for mapping between different representations of the same or similar objects in different databases poses a major impediment to data integration and interoperability. Mappings often lack the metadata needed to be correctly interpreted and applied. For example, are two terms equivalent or merely related? Are they narrow or broad matches? Or are they associated in some other way? Such relationships between the mapped terms are often not documented, which leads to incorrect assumptions and makes them hard to use in scenarios that require a high degree of precision (such as diagnostics or risk prediction). Furthermore, the lack of descriptions of how mappings were done makes it hard to combine and reconcile mappings, particularly curated and automated ones. We have developed the Simple Standard for Sharing Ontological Mappings (SSSOM) which addresses these problems by: (i) Introducing a machine-readable and extensible vocabulary to describe metadata that makes imprecision, inaccuracy and incompleteness in mappings explicit. (ii) Defining an easy-to-use simple table-based format that can be integrated into existing data science pipelines without the need to parse or query ontologies, and that integrates seamlessly with Linked Data principles. (iii) Implementing open and community-driven collaborative workflows that are designed to evolve the standard continuously to address changing requirements and mapping practices. (iv) Providing reference tools and software libraries for working with the standard. In this paper, we present the SSSOM standard, describe several use cases in detail and survey some of the existing work on standardizing the exchange of mappings, with the goal of making mappings Findable, Accessible, Interoperable and Reusable (FAIR). The SSSOM specification can be found at http://w3id.org/sssom/spec. Database URL: http://w3id.org/sssom/spec.


Assuntos
Metadados , Web Semântica , Gerenciamento de Dados , Bases de Dados Factuais , Fluxo de Trabalho
4.
BMC Bioinformatics ; 12 Suppl 8: S4, 2011 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-22151968

RESUMO

BACKGROUND: The BioCreative challenge evaluation is a community-wide effort for evaluating text mining and information extraction systems applied to the biological domain. The biocurator community, as an active user of biomedical literature, provides a diverse and engaged end user group for text mining tools. Earlier BioCreative challenges involved many text mining teams in developing basic capabilities relevant to biological curation, but they did not address the issues of system usage, insertion into the workflow and adoption by curators. Thus in BioCreative III (BC-III), the InterActive Task (IAT) was introduced to address the utility and usability of text mining tools for real-life biocuration tasks. To support the aims of the IAT in BC-III, involvement of both developers and end users was solicited, and the development of a user interface to address the tasks interactively was requested. RESULTS: A User Advisory Group (UAG) actively participated in the IAT design and assessment. The task focused on gene normalization (identifying gene mentions in the article and linking these genes to standard database identifiers), gene ranking based on the overall importance of each gene mentioned in the article, and gene-oriented document retrieval (identifying full text papers relevant to a selected gene). Six systems participated and all processed and displayed the same set of articles. The articles were selected based on content known to be problematic for curation, such as ambiguity of gene names, coverage of multiple genes and species, or introduction of a new gene name. Members of the UAG curated three articles for training and assessment purposes, and each member was assigned a system to review. A questionnaire related to the interface usability and task performance (as measured by precision and recall) was answered after systems were used to curate articles. Although the limited number of articles analyzed and users involved in the IAT experiment precluded rigorous quantitative analysis of the results, a qualitative analysis provided valuable insight into some of the problems encountered by users when using the systems. The overall assessment indicates that the system usability features appealed to most users, but the system performance was suboptimal (mainly due to low accuracy in gene normalization). Some of the issues included failure of species identification and gene name ambiguity in the gene normalization task leading to an extensive list of gene identifiers to review, which, in some cases, did not contain the relevant genes. The document retrieval suffered from the same shortfalls. The UAG favored achieving high performance (measured by precision and recall), but strongly recommended the addition of features that facilitate the identification of correct gene and its identifier, such as contextual information to assist in disambiguation. DISCUSSION: The IAT was an informative exercise that advanced the dialog between curators and developers and increased the appreciation of challenges faced by each group. A major conclusion was that the intended users should be actively involved in every phase of software development, and this will be strongly encouraged in future tasks. The IAT Task provides the first steps toward the definition of metrics and functional requirements that are necessary for designing a formal evaluation of interactive curation systems in the BioCreative IV challenge.


Assuntos
Mineração de Dados/métodos , Genes , Animais , Biologia Computacional/métodos , Publicações Periódicas como Assunto , Plantas/genética , Plantas/metabolismo
5.
Drug Discov Today ; 24(10): 2068-2075, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31158512

RESUMO

In this review, we provide a summary of recent progress in ontology mapping (OM) at a crucial time when biomedical research is under a deluge of an increasing amount and variety of data. This is particularly important for realising the full potential of semantically enabled or enriched applications and for meaningful insights, such as drug discovery, using machine-learning technologies. We discuss challenges and solutions for better ontology mappings, as well as how to select ontologies before their application. In addition, we describe tools and algorithms for ontology mapping, including evaluation of tool capability and quality of mappings. Finally, we outline the requirements for an ontology mapping service (OMS) and the progress being made towards implementation of such sustainable services.


Assuntos
Ontologias Biológicas , Descoberta de Drogas/métodos , Aprendizado de Máquina , Semântica , Algoritmos , Humanos
6.
Drug Discov Today ; 24(4): 933-938, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30690198

RESUMO

Biopharmaceutical industry R&D, and indeed other life sciences R&D such as biomedical, environmental, agricultural and food production, is becoming increasingly data-driven and can significantly improve its efficiency and effectiveness by implementing the FAIR (findable, accessible, interoperable, reusable) guiding principles for scientific data management and stewardship. By so doing, the plethora of new and powerful analytical tools such as artificial intelligence and machine learning will be able, automatically and at scale, to access the data from which they learn, and on which they thrive. FAIR is a fundamental enabler for digital transformation.


Assuntos
Gerenciamento de Dados , Indústria Farmacêutica , Produtos Biológicos , Pesquisa Biomédica
7.
J Biomed Semantics ; 8(1): 55, 2017 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-29197409

RESUMO

BACKGROUND: The disease and phenotype track was designed to evaluate the relative performance of ontology matching systems that generate mappings between source ontologies. Disease and phenotype ontologies are important for applications such as data mining, data integration and knowledge management to support translational science in drug discovery and understanding the genetics of disease. RESULTS: Eleven systems (out of 21 OAEI participating systems) were able to cope with at least one of the tasks in the Disease and Phenotype track. AML, FCA-Map, LogMap(Bio) and PhenoMF systems produced the top results for ontology matching in comparison to consensus alignments. The results against manually curated mappings proved to be more difficult most likely because these mapping sets comprised mostly subsumption relationships rather than equivalence. Manual assessment of unique equivalence mappings showed that AML, LogMap(Bio) and PhenoMF systems have the highest precision results. CONCLUSIONS: Four systems gave the highest performance for matching disease and phenotype ontologies. These systems coped well with the detection of equivalence matches, but struggled to detect semantic similarity. This deserves more attention in the future development of ontology matching systems. The findings of this evaluation show that such systems could help to automate equivalence matching in the workflow of curators, who maintain ontology mapping services in numerous domains such as disease and phenotype.


Assuntos
Ontologias Biológicas , Doença , Fenótipo , Consenso , Humanos
8.
Drug Discov Today ; 18(9-10): 428-34, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23247259

RESUMO

Research in the life sciences requires ready access to primary data, derived information and relevant knowledge from a multitude of sources. Integration and interoperability of such resources are crucial for sharing content across research domains relevant to the life sciences. In this article we present a perspective review of data integration with emphasis on a semantics driven approach to data integration that pushes content into a shared infrastructure, reduces data redundancy and clarifies any inconsistencies. This enables much improved access to life science data from numerous primary sources. The Semantic Enrichment of the Scientific Literature (SESL) pilot project demonstrates feasibility for using already available open semantic web standards and technologies to integrate public and proprietary data resources, which span structured and unstructured content. This has been accomplished through a precompetitive consortium, which provides a cost effective approach for numerous stakeholders to work together to solve common problems.


Assuntos
Coleta de Dados , Disseminação de Informação , Armazenamento e Recuperação da Informação , Integração de Sistemas , Disciplinas das Ciências Biológicas , Humanos , Internet
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA