Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Traffic ; 17(3): 289-300, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26602861

RESUMO

Ligand stimulation promotes downregulation of RTKs, a mechanism by which RTKs, through the ubiquitination pathway are removed from the cell surface, causing a temporary termination of RTK signaling. The molecular mechanisms governing RTK trafficking and maturation in the endoplasmic reticulum (ER)/Golgi compartments are poorly understood. Vascular endothelial growth factor receptor-2 (VEGFR-2) is a prototypic RTK that plays a critical role in physiologic and pathologic angiogenesis. Here we demonstrate that Ring Finger Protein 121 (RNF121), an ER ubiquitin E3 ligase, is expressed in endothelial cells and regulates maturation of VEGFR-2. RNF121 recognizes newly synthesized VEGFR-2 in the ER and controls its trafficking and maturation. Over-expression of RNF121 promoted ubiquitination of VEGFR-2, inhibited its maturation and resulted a significantly reduced VEGFR-2 presence at the cell surface. Conversely, the shRNA-mediated knockdown of RNF121 in primary endothelial cells reduced VEGFR-2 ubiquitination and increased its cell surface level. The RING Finger domain of RNF121 is required for its activity toward VEGFR-2, as its deletion significantly reduced the effect of RNF121 on VEGFR-2. Additionally, RNF121 inhibited VEGF-induced endothelial cell proliferation and angiogenesis. Taken together, these data identify RNF121 as a key determinant of angiogenic signaling that restricts VEGFR-2 cell surface presence and its angiogenic signaling.


Assuntos
Membrana Celular/metabolismo , Proteínas de Membrana/metabolismo , Transdução de Sinais , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Proliferação de Células , Retículo Endoplasmático/metabolismo , Células HEK293 , Células HT29 , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/fisiologia , Humanos , Proteínas de Membrana/genética , Transporte Proteico , Suínos , Ubiquitinação , Fator A de Crescimento do Endotélio Vascular/metabolismo
2.
Am J Pathol ; 185(10): 2757-67, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26342724

RESUMO

Oxidative damage to renal tubular epithelial cells is a fundamental pathogenic mechanism implicated in both acute kidney injury and chronic kidney diseases. Because epithelial cell survival influences the outcome of acute kidney injury and chronic kidney diseases, identifying its molecular regulators could provide new insight into pathobiology and possible new therapeutic strategies for these diseases. We have identified transmembrane and immunoglobulin domain-containing 1 (TMIGD1) as a novel adhesion molecule, which is highly conserved in humans and other species. TMIGD1 is expressed in renal tubular epithelial cells and promotes cell survival. The extracellular domain of TMIGD1 contains two putative immunoglobulin domains and mediates self-dimerization. Our data suggest that TMIGD1 regulates transepithelial electric resistance and permeability of renal epithelial cells. TMIGD1 controls cell migration, cell morphology, and protects renal epithelial cells from oxidative- and nutrient-deprivation-induced cell injury. Hydrogen peroxide-induced oxidative cell injury downregulates TMIGD1 expression and targets it for ubiquitination. Moreover, TMIGD1 expression is significantly affected in both acute kidney injury and in deoxy-corticosterone acetate and sodium chloride (deoxy-corticosterone acetate salt)-induced chronic hypertensive kidney disease mouse models. Taken together, we have identified TMIGD1 as a novel cell adhesion molecule expressed in kidney epithelial cells that protects kidney epithelial cells from oxidative cell injury to promote cell survival.


Assuntos
Injúria Renal Aguda/metabolismo , Células Epiteliais/metabolismo , Glicoproteínas de Membrana/metabolismo , Estresse Oxidativo/fisiologia , Injúria Renal Aguda/patologia , Animais , Moléculas de Adesão Celular/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Imunoglobulinas/metabolismo , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/patologia , Camundongos da Linhagem 129 , RNA Mensageiro/metabolismo
3.
Angiogenesis ; 18(4): 449-62, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26059764

RESUMO

Expression and activation of vascular endothelial growth factor receptor 2 (VEGFR-2) by VEGF ligands are the main events in the stimulation of pathological angiogenesis. VEGFR-2 expression is generally low in the healthy adult blood vessels, but its expression is markedly increased in the pathological angiogenesis. In this report, we demonstrate that phosducin-like 3 (PDCL3), a recently identified chaperone protein involved in the regulation of VEGFR-2 expression, is required for angiogenesis in zebrafish and mouse. PDCL3 undergoes N-terminal methionine acetylation, and this modification affects PDCL3 expression and its interaction with VEGFR-2. Expression of PDCL3 is regulated by hypoxia, the known stimulator of angiogenesis. The mutant PDCL3 that is unable to undergo N-terminal methionine acetylation was refractory to the effect of hypoxia. The siRNA-mediated silencing of PDCL3 decreased VEGFR-2 expression resulting in a decrease in VEGF-induced VEGFR-2 phosphorylation, whereas PDCL3 over-expression increased VEGFR-2 protein. Furthermore, we show that PDCL3 protects VEGFR-2 from misfolding and aggregation. The data provide new insights for the chaperone function of PDCL3 in angiogenesis and the roles of hypoxia and N-terminal methionine acetylation in PDCL3 expression and its effect on VEGFR-2.


Assuntos
Proteínas de Transporte/metabolismo , Regulação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/metabolismo , Hipóxia/metabolismo , Chaperonas Moleculares/metabolismo , Neovascularização Fisiológica , Proteínas do Tecido Nervoso/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/biossíntese , Animais , Células HEK293 , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Hipóxia/patologia , Camundongos , Dobramento de Proteína
4.
Cell Death Discov ; 10(1): 175, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622136

RESUMO

Papillary thyroid carcinoma (PTC) is the most frequent form of thyroid cancer. PTC commonly presents with mutations of the serine/threonine kinase BRAF (BRAFV600E), which drive ERK1/2 pathway activation to support growth and suppress apoptosis. PTC patients often undergo surgical resection; however, since the average age of PTC patients is under 50, adverse effects associated with prolonged maintenance therapy following total thyroidectomy are a concern. The development of mutant-selective BRAF inhibitors (BRAFi), like vemurafenib, has been efficacious in patients with metastatic melanoma, but the response rate is low for mutant BRAF PTC patients. Here, we assay the therapeutic response of BRAFi in a panel of human PTC cell lines and freshly biopsied patient samples. We observed heterogeneous responses to BRAFi, and multi-omic comparisons between susceptible and resistant mutant BRAF PTC revealed overrepresented stress response pathways and the absence of compensatory RTK activation - features that may underpin innate resistance. Importantly, resistant cell lines and patient samples had increased hallmarks of failed apoptosis; a cellular state defined by sublethal caspase activation and DNA damage. Further analysis suggests that the failed apoptotic phenotypes may have features of "minority mitochondrial outer membrane permeabilization (MOMP)" - a stress-related response characterized by fragmented and porous mitochondria known to contribute to cancer aggressiveness. We found that cells presenting with minority MOMP-like phenotypes are dependent on the apoptotic regulator, Mcl-1, as treatment with the Mcl-1 inhibitor, AZD5991, potently induced cell death in resistant cells. Furthermore, PI3K/AKT inhibitors sensitized resistant cells to BRAFi; an effect that was at least in part associated with reduced Mcl-1 levels. Together, these data implicate minority MOMP as a mechanism associated with intrinsic drug resistance and underscore the benefits of targeting Mcl-1 in mutant BRAF PTC.

5.
iScience ; 25(8): 104736, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-35942094

RESUMO

Through tightly controlled multilayer mechanisms, vascular endothelial growth factor receptor-2 (VEGFR-2) activation and its downstream signal transduction govern vasculogenesis and pathological angiogenesis, such as tumor angiogenesis. Therefore, it is critical to understand the molecular mechanisms governing VEGFR-2 signal transduction. We report that protein arginine methyltransferase 4 (PRMT4) via its highly conserved EVH1 and PH domain-like N-terminal domain binds to VEGFR-2 and mediates methylation of the juxtamembrane arginine 817 (R817) on VEGFR-2. Methylation of R817 selectively increases phosphorylation of tyrosine 820 (Y820). Phosphorylation of Y820 facilitates the c-Src binding with VEGFR-2 via Src homology domain 2 (SH2). Interfering with the methylation of R817 or phosphorylation of Y820 inhibits VEGFR-2-induced filopodia protrusions, a process that is critical for the core angiogenic responses of VEGFR-2. Methylation of R817 is an important previously unrecognized mechanism of the angiogenic signaling of VEGFR-2, with implications for the development of novel-targeted VEGFR-2 inhibitors.

6.
Mol Cancer Res ; 20(8): 1260-1271, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35426938

RESUMO

BRCA1-associated protein 1 (BAP1) is a tumor suppressor gene that is mutated in cancer, including uveal melanoma. Loss-of-function BAP1 mutations are associated with uveal melanoma metastasis and poor prognosis, but the mechanisms underlying these effects remain unclear. Upregulation of cell-cell adhesion proteins is involved with collective migration and metastatic seeding of cancer cells. Here, we show that BAP1 loss in uveal melanoma patient samples is associated with upregulated gene expression of multiple cell adhesion molecules (CAM), including E-cadherin (CDH1), cell adhesion molecule 1 (CADM1), and syndecan-2 (SDC2). Similar findings were observed in uveal melanoma cell lines and single-cell RNA-sequencing data from uveal melanoma patient samples. BAP1 reexpression in uveal melanoma cells reduced E-cadherin and CADM1 levels. Functionally, knockdown of E-cadherin decreased spheroid cluster formation and knockdown of CADM1 decreased growth of BAP1-mutant uveal melanoma cells. Together, our findings demonstrate that BAP1 regulates the expression of CAMs which may regulate metastatic traits. IMPLICATIONS: BAP1 mutations and increased metastasis may be due to upregulation of CAMs.


Assuntos
Melanoma , Proteínas Supressoras de Tumor , Ubiquitina Tiolesterase , Neoplasias Uveais , Antígenos CD , Caderinas/genética , Molécula 1 de Adesão Celular/genética , Humanos , Melanoma/patologia , Sindecana-2 , Proteínas Supressoras de Tumor/genética , Ubiquitina Tiolesterase/genética , Neoplasias Uveais/patologia
7.
Mol Cancer Res ; 19(1): 25-37, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33004622

RESUMO

Prior to metastasis, modern therapeutics and surgical intervention can provide a favorable long-term survival for patients diagnosed with many types of cancers. However, prognosis is poor for patients with metastasized disease. Melanoma is the deadliest form of skin cancer, yet in situ and localized, thin melanomas can be biopsied with little to no postsurgical follow-up. However, patients with metastatic melanoma require significant clinical involvement and have a 5-year survival of only 34% to 52%, largely dependent on the site of colonization. Melanoma metastasis is a multi-step process requiring dynamic changes in cell surface proteins regulating adhesiveness to the extracellular matrix (ECM), stroma, and other cancer cells in varied tumor microenvironments. Here we will highlight recent literature to underscore how cell adhesion molecules (CAM) contribute to melanoma disease progression and metastasis.


Assuntos
Moléculas de Adesão Celular/metabolismo , Progressão da Doença , Humanos , Metástase Neoplásica , Prognóstico
8.
J Vis Exp ; (175)2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34633392

RESUMO

Brain metastasis is a serious consequence of breast cancer for women as these tumors are difficult to treat and are associated with poor clinical outcomes. Preclinical mouse models of breast cancer brain metastatic (BCBM) growth are useful but are expensive, and it is difficult to track live cells and tumor cell invasion within the brain parenchyma. Presented here is a protocol for ex vivo brain slice cultures from xenografted mice containing intracranially injected breast cancer brain-seeking clonal sublines. MDA-MB-231BR luciferase tagged cells were injected intracranially into the brains of Nu/Nu female mice, and following tumor formation, the brains were isolated, sliced, and cultured ex vivo. The tumor slices were imaged to identify tumor cells expressing luciferase and monitor their proliferation and invasion in the brain parenchyma for up to 10 days. Further, the protocol describes the use of time-lapse microscopy to image the growth and invasive behavior of the tumor cells following treatment with ionizing radiation or chemotherapy. The response of tumor cells to treatments can be visualized by live-imaging microscopy, measuring bioluminescence intensity, and performing histology on the brain slice containing BCBM cells. Thus, this ex vivo slice model may be a useful platform for rapid testing of novel therapeutic agents alone or in combination with radiation to identify drugs personalized to target an individual patient's breast cancer brain metastatic growth within the brain microenvironment.


Assuntos
Neoplasias Encefálicas , Fenômenos Fisiológicos do Sistema Nervoso , Animais , Encéfalo , Feminino , Luciferases , Camundongos , Camundongos Nus , Microambiente Tumoral
9.
Cancer Discov ; 10(2): 254-269, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31796433

RESUMO

Combinations of BRAF inhibitors and MEK inhibitors (BRAFi + MEKi) are FDA-approved to treat BRAF V600E/K-mutant melanoma. Efficacy of BRAFi + MEKi associates with cancer cell death and alterations in the tumor immune microenvironment; however, the links are poorly understood. We show that BRAFi + MEKi caused durable melanoma regression in an immune-mediated manner. BRAFi + MEKi treatment promoted cleavage of gasdermin E (GSDME) and release of HMGB1, markers of pyroptotic cell death. GSDME-deficient melanoma showed defective HMGB1 release, reduced tumor-associated T cell and activated dendritic cell infiltrates in response to BRAFi + MEKi, and more frequent tumor regrowth after drug removal. Importantly, BRAFi + MEKi-resistant disease lacked pyroptosis markers and showed decreased intratumoral T-cell infiltration but was sensitive to pyroptosis-inducing chemotherapy. These data implicate BRAFi + MEKi-induced pyroptosis in antitumor immune responses and highlight new therapeutic strategies for resistant melanoma. SIGNIFICANCE: Targeted inhibitors and immune checkpoint agents have advanced the care of patients with melanoma; however, detailed knowledge of the intersection between these two research areas is lacking. We describe a molecular mechanism of targeted inhibitor regulation of an immune-stimulatory form of cell death and provide a proof-of-principle salvage therapy concept for inhibitor-resistant melanoma.See related commentary by Smalley, p. 176.This article is highlighted in the In This Issue feature, p. 161.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Melanoma/tratamento farmacológico , Proteínas Proto-Oncogênicas B-raf/genética , Piroptose/efeitos dos fármacos , Neoplasias Cutâneas/tratamento farmacológico , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Linhagem Celular Tumoral/transplante , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/imunologia , Feminino , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Masculino , Melanoma/genética , Melanoma/imunologia , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Mutação , Estudo de Prova de Conceito , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/metabolismo , Piroptose/genética , Piroptose/imunologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/imunologia , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia
10.
Cell Death Dis ; 10(4): 281, 2019 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-30911007

RESUMO

Metastatic cancer remains a clinical challenge; however, patients diagnosed prior to metastatic dissemination have a good prognosis. The transcription factor, TWIST1 has been implicated in enhancing the migration and invasion steps within the metastatic cascade, but the range of TWIST1-regulated targets is poorly described. In this study, we performed expression profiling to identify the TWIST1-regulated transcriptome of melanoma cells. Gene ontology pathway analysis revealed that TWIST1 and epithelial to mesenchymal transition (EMT) were inversely correlated with levels of cell adhesion molecule 1 (CADM1). Chromatin immunoprecipitation (ChIP) studies and promoter assays demonstrated that TWIST1 physically interacts with the CADM1 promoter, suggesting TWIST1 directly represses CADM1 levels. Increased expression of CADM1 resulted in significant inhibition of motility and invasiveness of melanoma cells. In addition, elevated CADM1 elicited caspase-independent cell death in non-adherent conditions. Expression array analysis suggests that CADM1 directed non-adherent cell death is associated with loss of mitochondrial membrane potential and subsequent failure of oxidative phosphorylation pathways. Importantly, tissue microarray analysis and clinical data from TCGA indicate that CADM1 expression is inversely associated with melanoma progression and positively correlated with better overall survival in patients. Together, these data suggest that CADM1 exerts tumor suppressive functions in melanoma by reducing invasive potential and may be considered a biomarker for favorable prognosis.


Assuntos
Molécula 1 de Adesão Celular/metabolismo , Melanoma/metabolismo , Melanoma/patologia , Proteínas Nucleares/metabolismo , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Proteína 1 Relacionada a Twist/metabolismo , Biomarcadores Tumorais , Molécula 1 de Adesão Celular/genética , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Potencial da Membrana Mitocondrial/genética , Invasividade Neoplásica/genética , Proteínas Nucleares/genética , Prognóstico , Intervalo Livre de Progressão , Regiões Promotoras Genéticas , Análise Serial de Tecidos , Transfecção , Proteína 1 Relacionada a Twist/genética
11.
Pigment Cell Melanoma Res ; 32(5): 687-696, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31063649

RESUMO

Epigenetic agents such as bromodomain and extra-terminal region inhibitors (BETi) slow tumor growth via tumor intrinsic alterations; however, their effects on antitumor immunity remain unclear. A recent advance is the development of next-generation BETi that are potent and display a favorable half-life. Here, we tested the BETi, PLX51107, for immune-based effects on tumor growth in BRAF V600E melanoma syngeneic models. PLX51107 delayed melanoma tumor growth and increased activated, proliferating, and functional CD8+ T cells in tumors leading to CD8+ T-cell-mediated tumor growth delay. PLX51107 decreased Cox2 expression, increased dendritic cells, and lowered PD-L1, FasL, and IDO-1 expression in the tumor microenvironment. Importantly, PLX51107 delayed the growth of tumors that progressed on anti-PD-1 therapy; a response associated with decreased Cox2 levels, decreased PD-L1 expression on non-immune cells, and increased intratumoral CD8+ T cells. Thus, next-generation BETi represent a potential first-line and secondary treatment strategy for metastatic melanoma by eliciting effects, at least in part, on antitumor CD8+ T cells.


Assuntos
Antineoplásicos/farmacologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Melanoma/tratamento farmacológico , Oxazóis/farmacologia , Proteínas/antagonistas & inibidores , Piridinas/farmacologia , Pirróis/farmacologia , Animais , Antineoplásicos/uso terapêutico , Apoptose , Linfócitos T CD8-Positivos/imunologia , Proliferação de Células , Humanos , Masculino , Melanoma/imunologia , Melanoma/patologia , Camundongos , Camundongos Endogâmicos C57BL , Oxazóis/uso terapêutico , Piridinas/uso terapêutico , Pirróis/uso terapêutico , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Cell Rep ; 25(6): 1501-1510.e3, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30404005

RESUMO

Expression of aberrantly spliced BRAF V600E isoforms (BRAF V600E ΔEx) mediates resistance in 13%-30% of melanoma patients progressing on RAF inhibitors. BRAF V600E ΔEx confers resistance, in part, through enhanced dimerization. Here, we uncoupled BRAF V600E ΔEx dimerization from maintenance of MEK-ERK1/2 signaling. Furthermore, we show BRAF V600E ΔEx association with its substrate, MEK, is enhanced and required for RAF inhibitor resistance. RAF inhibitor treatment increased phosphorylation at serine 729 (S729) in BRAF V600E ΔEx. Mutation of S729 to a non-phosphorylatable residue reduced BRAF V600E ΔEx-MEK interaction, reduced dimerization or oligomerization, and increased RAF inhibitor sensitivity. Conversely, mutation of the BRAF dimerization domain elicited partial effects on MEK association and RAF inhibitor sensitivity. Our data implicate BRAF S729 in resistance to RAF inhibitor and underscore the importance of substrate association with BRAF V600E ΔEx. These findings may provide opportunities to target resistance driven by aberrantly spliced forms of BRAF V600E.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/genética , Splicing de RNA/genética , Animais , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Indóis/farmacologia , Camundongos Nus , Mutação/genética , Fosforilação/efeitos dos fármacos , Multimerização Proteica , Serina/metabolismo , Especificidade por Substrato , Sulfonamidas/farmacologia , Vemurafenib/farmacologia
13.
Mol Cancer Ther ; 17(1): 84-95, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29133617

RESUMO

FDA-approved BRAF inhibitors produce high response rates and improve overall survival in patients with BRAF V600E/K-mutant melanoma, but are linked to pathologies associated with paradoxical ERK1/2 activation in wild-type BRAF cells. To overcome this limitation, a next-generation paradox-breaking RAF inhibitor (PLX8394) has been designed. Here, we show that by using a quantitative reporter assay, PLX8394 rapidly suppressed ERK1/2 reporter activity and growth of mutant BRAF melanoma xenografts. Ex vivo treatment of xenografts and use of a patient-derived explant system (PDeX) revealed that PLX8394 suppressed ERK1/2 signaling and elicited apoptosis more effectively than the FDA-approved BRAF inhibitor, vemurafenib. Furthermore, PLX8394 was efficacious against vemurafenib-resistant BRAF splice variant-expressing tumors and reduced splice variant homodimerization. Importantly, PLX8394 did not induce paradoxical activation of ERK1/2 in wild-type BRAF cell lines or PDeX. Continued in vivo dosing of xenografts with PLX8394 led to the development of acquired resistance via ERK1/2 reactivation through heterogeneous mechanisms; however, resistant cells were found to have differential sensitivity to ERK1/2 inhibitor. These findings highlight the efficacy of a paradox-breaking selective BRAF inhibitor and the use of PDeX system to test the efficacy of therapeutic agents. Mol Cancer Ther; 17(1); 84-95. ©2017 AACR.


Assuntos
Melanoma/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas B-raf/genética , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Melanoma/patologia , Camundongos Nus , Inibidores de Proteínas Quinases/farmacologia
14.
Clin Cancer Res ; 22(7): 1550-2, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26842234

RESUMO

Targeted therapies have advanced the treatment options for cutaneous melanoma, but many patients will progress on drug. Patient-derived xenografts (PDX) can be used to recapitulate therapy-resistant tumors. Furthermore, PDX modeling can be utilized in combination with targeted sequencing and phosphoproteomic platforms, providing preclinical basis for second-line targeted inhibitor strategies. See related article by Krepler et al., p. 1592.


Assuntos
Medicina de Precisão , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Xenoenxertos , Humanos , Melanoma , Camundongos , Transplante Heterólogo
15.
J Invest Dermatol ; 134(2): 319-325, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24108405

RESUMO

In early 2011, we reviewed the initial success of the RAF inhibitor vemurafenib in mutant V600 BRAF melanoma patients. It was soon evident that the response to RAF inhibitor is heterogeneous and that the short-term benefits are burdened by the development of resistance. The field has progressed rapidly with the Food and Drug Administration approval of vemurafenib and the development of other RAF and MEK (mitogen-activated protein kinase/extracellular signal-regulated kinase) inhibitors. Despite these advances, the issue of RAF inhibitor resistance remains. Here, we review recent clinical advances in the field, the growing number of resistance mechanisms, preclinical evidence for combinatorial trials using RAF inhibitors as the building blocks, and the new challenges that are arising.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Indóis/uso terapêutico , Melanoma/tratamento farmacológico , Neoplasias Cutâneas/tratamento farmacológico , Sulfonamidas/uso terapêutico , Quinases raf/antagonistas & inibidores , Humanos , Vemurafenib
16.
Mol Cancer Res ; 12(5): 795-802, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24520098

RESUMO

UNLABELLED: Resistance to RAF inhibitors such as vemurafenib and dabrafenib is a major clinical problem in the treatment of melanoma. Patients with mutant BRAF melanoma that progress on RAF inhibitors have limited treatment options, and drug removal from resistant tumors may elicit multiple effects. A frequent mechanism of resistance to RAF inhibitors is caused by expression of mutant BRAF splice variants. RAF inhibitor-resistant cell lines, generated in vivo, were tested as to whether or not mutant BRAF splice variants confer a fitness advantage in the presence of RAF inhibitor. Critically, cells expressing distinct mutant BRAF splice variants grow more efficiently in vitro and in vivo in the presence of the vemurafenib analog, PLX4720, compared with in the absence of inhibitor. PLX4720-treated BRAF splice variant-expressing cells exhibited levels of phospho-extracellular signal-regulated kinase (ERK)1/2 comparable to untreated parental cells. In addition, a reduction in phospho-ERK1/2 levels following treatment with the MEK inhibitor, trametinib (GSK1120212) phenocopied the fitness benefit provided by PLX4720. These data indicate that mutant BRAF splice variant-expressing melanoma cells are benefited by defined concentrations of RAF inhibitors. IMPLICATIONS: This study provides evidence that RAF inhibitor-resistant melanoma cells benefit from continued therapy.


Assuntos
Indóis/farmacologia , Melanoma/tratamento farmacológico , Melanoma/genética , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/genética , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/genética , Sulfonamidas/farmacologia , Animais , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Melanoma/enzimologia , Melanoma/patologia , Camundongos , Camundongos Nus , Isoformas de Proteínas , Neoplasias Cutâneas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Pigment Cell Melanoma Res ; 27(3): 479-84, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24422853

RESUMO

Vemurafenib and dabrafenib block MEK-ERK1/2 signaling and cause tumor regression in the majority of advanced-stage BRAF(V600E) melanoma patients; however, acquired resistance and paradoxical signaling have driven efforts for more potent and selective RAF inhibitors. Next-generation RAF inhibitors, such as PLX7904 (PB04), effectively inhibit RAF signaling in BRAF(V600E) melanoma cells without paradoxical effects in wild-type cells. Furthermore, PLX7904 blocks the growth of vemurafenib-resistant BRAF(V600E) cells that express mutant NRAS. Acquired resistance to vemurafenib and dabrafenib is also frequently driven by expression of mutation BRAF splice variants; thus, we tested the effects of PLX7904 and its clinical analog, PLX8394 (PB03), in BRAF(V600E) splice variant-mediated vemurafenib-resistant cells. We show that paradox-breaker RAF inhibitors potently block MEK-ERK1/2 signaling, G1/S cell cycle events, survival and growth of vemurafenib/PLX4720-resistant cells harboring distinct BRAF(V600E) splice variants. These data support the further investigation of paradox-breaker RAF inhibitors as a second-line treatment option for patients failing on vemurafenib or dabrafenib.


Assuntos
Melanoma/enzimologia , Proteínas de Neoplasias/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Quinases raf/antagonistas & inibidores , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , GTP Fosfo-Hidrolases/antagonistas & inibidores , GTP Fosfo-Hidrolases/genética , Genes ras , Humanos , Imidazóis/farmacologia , Indóis/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Melanoma/patologia , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Mutação de Sentido Incorreto , Proteínas de Neoplasias/genética , Oximas/farmacologia , Fosforilação/efeitos dos fármacos , Isoformas de Proteínas/antagonistas & inibidores , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteínas Proto-Oncogênicas B-raf/genética , Transdução de Sinais/efeitos dos fármacos , Sulfonamidas/farmacologia , Ensaio Tumoral de Célula-Tronco , Vemurafenib
18.
Cancer Res ; 74(15): 4122-32, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25035390

RESUMO

ERBB3/HER3 expression and signaling are upregulated in mutant BRAF melanoma as an adaptive, prosurvival response to FDA-approved RAF inhibitors. Because compensatory ERBB3 signaling counteracts the effects of RAF inhibitors, cotargeting ERBB3 may increase the efficacy of RAF inhibitors in mutant BRAF models of melanoma. Here, we corroborate this concept by showing that the ERBB3 function-blocking monoclonal antibody huHER3-8 can inhibit neuregulin-1 activation of ERBB3 and downstream signaling in RAF-inhibited melanoma cells. Targeting mutant BRAF in combination with huHER3-8 decreased cell proliferation and increased cell death in vitro, and decreased tumor burden in vivo, compared with targeting either mutant BRAF or ERBB3 alone. Furthermore, the likelihood of a durable tumor response in vivo was increased when huHER3-8 was combined with RAF inhibitor PLX4720. Together, these results offer a preclinical proof of concept for the application of ERBB3-neutralizing antibodies to enhance the efficacy of RAF inhibitors in melanoma to delay or prevent tumor regrowth. As ERBB3 is often upregulated in response to other kinase-targeted therapeutics, these findings may have implications for other cancers as well.


Assuntos
Anticorpos Monoclonais/farmacologia , Melanoma/tratamento farmacológico , Melanoma/enzimologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Receptor ErbB-3/antagonistas & inibidores , Receptor ErbB-3/imunologia , Animais , Anticorpos Monoclonais/administração & dosagem , Processos de Crescimento Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Feminino , Xenoenxertos , Humanos , Indóis/administração & dosagem , Indóis/farmacologia , Melanoma/patologia , Camundongos , Camundongos Nus , Inibidores de Proteínas Quinases/administração & dosagem , Piridonas/farmacologia , Pirimidinonas/farmacologia , Transdução de Sinais , Sulfonamidas/administração & dosagem , Sulfonamidas/farmacologia , Vemurafenib
19.
J Invest Dermatol ; 133(8): 1928-9, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23856932

RESUMO

Despite recent advancements in the treatment of late-stage mutant BRAF (V600E/K) melanomas, a major hurdle continues to be acquired resistance to BRAF inhibitors such as vemurafenib. The mechanisms for resistance have proven to be heterogeneous, emphasizing the need to use broad therapeutic approaches. In this issue, the study "Stat3-targeted therapies overcome the acquired resistance to vemurafenib in melanomas" by Liu et al. proposes that signal transducer and activator of transcription 3 (STAT3)-paired box 3 (PAX3) signaling may be a mechanism that is used by melanomas to resist RAF inhibitors.


Assuntos
Resistencia a Medicamentos Antineoplásicos/fisiologia , Indóis/farmacologia , Queratinócitos/efeitos dos fármacos , Melanoma/tratamento farmacológico , Fator de Transcrição STAT3/antagonistas & inibidores , Neoplasias Cutâneas/tratamento farmacológico , Sulfonamidas/farmacologia , Humanos , Masculino , Vemurafenib
20.
Cancer Res ; 73(23): 7101-10, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24121492

RESUMO

Activation of the ERK1/2 mitogen-activated protein kinases (MAPK) confers resistance to the RAF inhibitors vemurafenib and dabrafenib in mutant BRAF-driven melanomas. Methods to understand how resistance develops are important to optimize the clinical use of RAF inhibitors in patients. Here, we report the development of a novel ERK1/2 reporter system that provides a noninvasive, quantitative, and temporal analysis of RAF inhibitor efficacy in vivo. Use of this system revealed heterogeneity in the level of ERK1/2 reactivation associated with acquired resistance to RAF inhibition. We identified several distinct novel and known molecular changes in resistant tumors emerging from treatment-naïve cell populations including BRAF V600E variants and HRAS mutation, both of which were required and sufficient for ERK1/2 reactivation and drug resistance. Our work offers an advance in understanding RAF inhibitor resistance and the heterogeneity in resistance mechanisms, which emerge from a malignant cell population.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Genes Reporter , Heterogeneidade Genética , Indóis/uso terapêutico , Sistema de Sinalização das MAP Quinases/genética , Neoplasias/genética , Sulfonamidas/uso terapêutico , Animais , Ativação Enzimática/genética , Feminino , Genes Reporter/fisiologia , Heterogeneidade Genética/efeitos dos fármacos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Camundongos , Camundongos Nus , Camundongos Transgênicos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/genética , Seleção Genética/fisiologia , Transfecção , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA