Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Breed Sci ; 68(3): 385-391, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30100807

RESUMO

The oilseed crop Brassica juncea carries many desirable traits; however, resistance to clubroot disease, caused by Plasmodiophora brassicae, is not available in this species. We are the first to report the clubroot resistant resynthesized B. juncea lines, developed through interspecific crosses between a clubroot resistant B. rapa ssp. rapifera and two susceptible B. nigra lines, and the stability of the resistance in self-pollinated generations. The interspecific nature of the resynthesized B. juncea plants was confirmed by using A- and B-genome specific SSR markers, and flow cytometric analysis of nuclear DNA content. Self-pollinated progeny (S1 and S2) of the resynthesized B. juncea plants were evaluated for resistance to P. brassicae pathotype 3. The S1 and S2 progenies of one of the resynthesized B. juncea lines were resistant to this pathotype. However, resistance was lost in 6 to 13% plants of the S2 progenies derived from the second resynthesized B. juncea line; this apparently resulted from the loss of the genomic region carrying resistance due to meiotic anomalies.

2.
Genome ; 59(10): 805-815, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27549861

RESUMO

Clubroot disease, caused by Plasmodiophora brassicae, is a threat to the production of Brassica crops including oilseed B. napus. In Canada, several pathotypes of this pathogen, such as pathotypes 2, 3, 5, 6, and 8, were identified, and resistance to these pathotypes was found in a rutabaga (B. napus var. napobrassica) genotype. In this paper, we report the genetic basis and molecular mapping of this resistance by use of F2, backcross (BC1), and doubled haploid (DH) populations generated from crossing of this rutabaga line to a susceptible spring B. napus canola line. The F1, F2, and BC1 populations were evaluated for resistance to pathotype 3, and the DH population was evaluated for resistance to pathotypes 2, 3, 5, 6, and 8. A 3:1 segregation in F2 and a 1:1 segregation in BC1 were found for resistance to pathotype 3, and a 1:1 segregation was found in the DH population for resistance to all pathotypes. Molecular mapping by using the DH population identified a genomic region on chromosome A8 carrying resistance to all five pathotypes. This suggests that a single gene or a cluster of genes, located in this genomic region, is involved in the control of resistance to these pathotypes.


Assuntos
Brassica napus/genética , Brassica napus/parasitologia , Mapeamento Cromossômico , Resistência à Doença/genética , Genes de Plantas , Doenças das Plantas/genética , Doenças das Plantas/parasitologia , Plasmodioforídeos , Cruzamentos Genéticos , Estudos de Associação Genética , Ligação Genética , Marcadores Genéticos , Haploidia , Repetições de Microssatélites , Plasmodioforídeos/genética , Plasmodioforídeos/isolamento & purificação , Locos de Características Quantitativas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA