Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Biol ; 22(1): e3002462, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38289969

RESUMO

Mutations in the gene encoding Cu-Zn superoxide dismutase 1 (SOD1) cause a subset of familial amyotrophic lateral sclerosis (fALS) cases. A shared effect of these mutations is that SOD1, which is normally a stable dimer, dissociates into toxic monomers that seed toxic aggregates. Considerable research effort has been devoted to developing compounds that stabilize the dimer of fALS SOD1 variants, but unfortunately, this has not yet resulted in a treatment. We hypothesized that cyclic thiosulfinate cross-linkers, which selectively target a rare, 2 cysteine-containing motif, can stabilize fALS-causing SOD1 variants in vivo. We created a library of chemically diverse cyclic thiosulfinates and determined structure-cross-linking-activity relationships. A pre-lead compound, "S-XL6," was selected based upon its cross-linking rate and drug-like properties. Co-crystallographic structure clearly establishes the binding of S-XL6 at Cys 111 bridging the monomers and stabilizing the SOD1 dimer. Biophysical studies reveal that the degree of stabilization afforded by S-XL6 (up to 24°C) is unprecedented for fALS, and to our knowledge, for any protein target of any kinetic stabilizer. Gene silencing and protein degrading therapeutic approaches require careful dose titration to balance the benefit of diminished fALS SOD1 expression with the toxic loss-of-enzymatic function. We show that S-XL6 does not share this liability because it rescues the activity of fALS SOD1 variants. No pharmacological agent has been proven to bind to SOD1 in vivo. Here, using a fALS mouse model, we demonstrate oral bioavailability; rapid engagement of SOD1G93A by S-XL6 that increases SOD1G93A's in vivo half-life; and that S-XL6 crosses the blood-brain barrier. S-XL6 demonstrated a degree of selectivity by avoiding off-target binding to plasma proteins. Taken together, our results indicate that cyclic thiosulfinate-mediated SOD1 stabilization should receive further attention as a potential therapeutic approach for fALS.


Assuntos
Esclerose Lateral Amiotrófica , Animais , Camundongos , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Cisteína/genética , Mutação , Superóxido Dismutase/genética , Superóxido Dismutase/química , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1/genética
2.
Proc Natl Acad Sci U S A ; 119(30): e2205664119, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35862453

RESUMO

Many enzymes utilize redox-coupled centers for performing catalysis where these centers are used to control and regulate the transfer of electrons required for catalysis, whose untimely delivery can lead to a state incapable of binding the substrate, i.e., a dead-end enzyme. Copper nitrite reductases (CuNiRs), which catalyze the reduction of nitrite to nitric oxide (NO), have proven to be a good model system for studying these complex processes including proton-coupled electron transfer (ET) and their orchestration for substrate binding/utilization. Recently, a two-domain CuNiR from a Rhizobia species (Br2DNiR) has been discovered with a substantially lower enzymatic activity where the catalytic type-2 Cu (T2Cu) site is occupied by two water molecules requiring their displacement for the substrate nitrite to bind. Single crystal spectroscopy combined with MSOX (multiple structures from one crystal) for both the as-isolated and nitrite-soaked crystals clearly demonstrate that inter-Cu ET within the coupled T1Cu-T2Cu redox system is heavily gated. Laser-flash photolysis and optical spectroscopy showed rapid ET from photoexcited NADH to the T1Cu center but little or no inter-Cu ET in the absence of nitrite. Furthermore, incomplete reoxidation of the T1Cu site (∼20% electrons transferred) was observed in the presence of nitrite, consistent with a slow formation of NO species in the serial structures of the MSOX movie obtained from the nitrite-soaked crystal, which is likely to be responsible for the lower activity of this CuNiR. Our approach is of direct relevance for studying redox reactions in a wide range of biological systems including metalloproteins that make up at least 30% of all proteins.


Assuntos
Cobre , Nitrito Redutases , Nitritos , Catálise , Cobre/química , Nitrito Redutases/química , Nitritos/química , Oxirredução , Análise Espectral
3.
PLoS Biol ; 17(2): e3000141, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30735496

RESUMO

Superoxide dismutase-1 (SOD1) maturation comprises a string of posttranslational modifications which transform the nascent peptide into a stable and active enzyme. The successive folding, metal ion binding, and disulphide acquisition steps in this pathway can be catalysed through a direct interaction with the copper chaperone for SOD1 (CCS). This process confers enzymatic activity and reduces access to noncanonical, aggregation-prone states. Here, we present the functional mechanisms of human copper chaperone for SOD1 (hCCS)-catalysed SOD1 activation based on crystal structures of reaction precursors, intermediates, and products. Molecular recognition of immature SOD1 by hCCS is driven by several interface interactions, which provide an extended surface upon which SOD1 folds. Induced-fit complexation is reliant on the structural plasticity of the immature SOD1 disulphide sub-loop, a characteristic which contributes to misfolding and aggregation in neurodegenerative disease. Complexation specifically stabilises the SOD1 disulphide sub-loop, priming it and the active site for copper transfer, while delaying disulphide formation and complex dissociation. Critically, a single destabilising amino acid substitution within the hCCS interface reduces hCCS homodimer affinity, creating a pool of hCCS available to interact with immature SOD1. hCCS substrate specificity, segregation between solvent and biological membranes, and interaction transience are direct results of this substitution. In this way, hCCS-catalysed SOD1 maturation is finessed to minimise copper wastage and reduce production of potentially toxic SOD1 species.


Assuntos
Cobre/química , Chaperonas Moleculares/química , Processamento de Proteína Pós-Traducional , Saccharomyces cerevisiae/química , Sequência de Aminoácidos , Substituição de Aminoácidos , Sítios de Ligação , Clonagem Molecular , Cobre/metabolismo , Dissulfetos/química , Dissulfetos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Evolução Molecular , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Modelos Moleculares , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato
4.
Q Rev Biophys ; 52: e12, 2019 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-31760962

RESUMO

Few proteins have come under such intense scrutiny as superoxide dismutase-1 (SOD1). For almost a century, scientists have dissected its form, function and then later its malfunction in the neurodegenerative disease amyotrophic lateral sclerosis (ALS). We now know SOD1 is a zinc and copper metalloenzyme that clears superoxide as part of our antioxidant defence and respiratory regulation systems. The possibility of reduced structural integrity was suggested by the first crystal structures of human SOD1 even before deleterious mutations in the sod1 gene were linked to the ALS. This concept evolved in the intervening years as an impressive array of biophysical studies examined the characteristics of mutant SOD1 in great detail. We now recognise how ALS-related mutations perturb the SOD1 maturation processes, reduce its ability to fold and reduce its thermal stability and half-life. Mutant SOD1 is therefore predisposed to monomerisation, non-canonical self-interactions, the formation of small misfolded oligomers and ultimately accumulation in the tell-tale insoluble inclusions found within the neurons of ALS patients. We have also seen that several post-translational modifications could push wild-type SOD1 down this toxic pathway. Recently we have come to view ALS as a prion-like disease where both the symptoms, and indeed SOD1 misfolding itself, are transmitted to neighbouring cells. This raises the possibility of intervention after the initial disease presentation. Several small-molecule and biologic-based strategies have been devised which directly target the SOD1 molecule to change the behaviour thought to be responsible for ALS. Here we provide a comprehensive review of the many biophysical advances that sculpted our view of SOD1 biology and the recent work that aims to apply this knowledge for therapeutic outcomes in ALS.


Assuntos
Esclerose Lateral Amiotrófica/enzimologia , Superóxido Dismutase-1/química , Superóxido Dismutase-1/metabolismo , Animais , Fenômenos Biofísicos , Humanos
5.
Philos Trans A Math Phys Eng Sci ; 377(2147): 20190147, 2019 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-31030660

RESUMO

The development of synchrotron science over the last 50 years is reviewed from the perspective of the authors' own scientific programmes. This article is part of the theme issue 'Fifty years of synchrotron science: achievements and opportunities'.

6.
Nature ; 496(7443): 123-6, 2013 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-23535590

RESUMO

Electron transfer reactions are essential for life because they underpin oxidative phosphorylation and photosynthesis, processes leading to the generation of ATP, and are involved in many reactions of intermediary metabolism. Key to these roles is the formation of transient inter-protein electron transfer complexes. The structural basis for the control of specificity between partner proteins is lacking because these weak transient complexes have remained largely intractable for crystallographic studies. Inter-protein electron transfer processes are central to all of the key steps of denitrification, an alternative form of respiration in which bacteria reduce nitrate or nitrite to N2 through the gaseous intermediates nitric oxide (NO) and nitrous oxide (N2O) when oxygen concentrations are limiting. The one-electron reduction of nitrite to NO, a precursor to N2O, is performed by either a haem- or copper-containing nitrite reductase (CuNiR) where they receive an electron from redox partner proteins a cupredoxin or a c-type cytochrome. Here we report the structures of the newly characterized three-domain haem-c-Cu nitrite reductase from Ralstonia pickettii (RpNiR) at 1.01 Å resolution and its M92A and P93A mutants. Very high resolution provides the first view of the atomic detail of the interface between the core trimeric cupredoxin structure of CuNiR and the tethered cytochrome c domain that allows the enzyme to function as an effective self-electron transfer system where the donor and acceptor proteins are fused together by genomic acquisition for functional advantage. Comparison of RpNiR with the binary complex of a CuNiR with a donor protein, AxNiR-cytc551 (ref. 6), and mutagenesis studies provide direct evidence for the importance of a hydrogen-bonded water at the interface in electron transfer. The structure also provides an explanation for the preferential binding of nitrite to the reduced copper ion at the active site in RpNiR, in contrast to other CuNiRs where reductive inactivation occurs, preventing substrate binding.


Assuntos
Transporte de Elétrons , Nitrito Redutases/química , Nitrito Redutases/metabolismo , Ralstonia pickettii/enzimologia , Azurina/química , Azurina/metabolismo , Domínio Catalítico , Cobre/química , Cobre/metabolismo , Citocromos c/química , Citocromos c/metabolismo , Ligação de Hidrogênio , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Nitrito Redutases/genética , Nitritos/química , Nitritos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Prótons , Água/química , Água/metabolismo
7.
Proc Natl Acad Sci U S A ; 113(8): 2104-9, 2016 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-26858410

RESUMO

The principal methyl donor of the cell, S-adenosylmethionine (SAMe), is produced by the highly conserved family of methionine adenosyltranferases (MATs) via an ATP-driven process. These enzymes play an important role in the preservation of life, and their dysregulation has been tightly linked to liver and colon cancers. We present crystal structures of human MATα2 containing various bound ligands, providing a "structural movie" of the catalytic steps. High- to atomic-resolution structures reveal the structural elements of the enzyme involved in utilization of the substrates methionine and adenosine and in formation of the product SAMe. MAT enzymes are also able to produce S-adenosylethionine (SAE) from substrate ethionine. Ethionine, an S-ethyl analog of the amino acid methionine, is known to induce steatosis and pancreatitis. We show that SAE occupies the active site in a manner similar to SAMe, confirming that ethionine also uses the same catalytic site to form the product SAE.


Assuntos
Metionina Adenosiltransferase/química , S-Adenosilmetionina/química , Catálise , Domínio Catalítico , Cristalografia por Raios X , Humanos
8.
Proc Natl Acad Sci U S A ; 112(3): 755-60, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25564664

RESUMO

Cytochrome bc1 is a proven drug target in the prevention and treatment of malaria. The rise in drug-resistant strains of Plasmodium falciparum, the organism responsible for malaria, has generated a global effort in designing new classes of drugs. Much of the design/redesign work on overcoming this resistance has been focused on compounds that are presumed to bind the Q(o) site (one of two potential binding sites within cytochrome bc1 using the known crystal structure of this large membrane-bound macromolecular complex via in silico modeling. Cocrystallization of the cytochrome bc1 complex with the 4(1H)-pyridone class of inhibitors, GSK932121 and GW844520, that have been shown to be potent antimalarial agents in vivo, revealed that these inhibitors do not bind at the Q(o) site but bind at the Q(i )site. The discovery that these compounds bind at the Q(i) site may provide a molecular explanation for the cardiotoxicity and eventual failure of GSK932121 in phase-1 clinical trial and highlight the need for direct experimental observation of a compound bound to a target site before chemical optimization and development for clinical trials. The binding of the 4(1H)-pyridone class of inhibitors to Q(i) also explains the ability of this class to overcome parasite Q(o)-based atovaquone resistance and provides critical structural information for future design of new selective compounds with improved safety profiles.


Assuntos
Antimaláricos/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Piridonas/metabolismo , Sítios de Ligação , Complexo III da Cadeia de Transporte de Elétrons/química , Simulação de Acoplamento Molecular
9.
Proc Natl Acad Sci U S A ; 111(11): 4309-14, 2014 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-24591609

RESUMO

Over the last two decades many secrets of the age-related human neural proteinopathies have been revealed. A common feature of these diseases is abnormal, and possibly pathogenic, aggregation of specific proteins in the effected tissue often resulting from inherent or decreased structural stability. An archetype example of this is superoxide dismutase-1, the first genetic factor to be linked with amyotrophic lateral sclerosis (ALS). Mutant or posttranslationally modified TAR DNA binding protein-32 (TDP-43) is also strongly associated with ALS and an increasingly large number of other neurodegenerative diseases, including frontotemporal lobar degeneration (FTLD). Cytoplasmic mislocalization and elevated half-life is a characteristic of mutant TDP-43. Furthermore, patient age at the onset of disease symptoms shows a good inverse correlation with mutant TDP-43 half-life. Here we show that ALS and FTLD-associated TDP-43 mutations in the central nucleic acid binding domains lead to elevated half-life and this is commensurate with increased thermal stability and inhibition of aggregation. It is achieved without impact on secondary, tertiary, or quaternary structure. We propose that tighter structural cohesion contributes to reduced protein turnover, increasingly abnormal proteostasis and, ultimately, faster onset of disease symptoms. These results contrast our perception of neurodegenerative diseases as misfolded proteinopathies and delineate a novel path from the molecular characteristics of mutant TDP-43 to aberrant cellular effects and patient phenotype.


Assuntos
Proteínas de Ligação a DNA/genética , Doenças Neurodegenerativas/epidemiologia , Doenças Neurodegenerativas/genética , Fluorescência , Meia-Vida , Humanos , Mutação/genética , Doenças Neurodegenerativas/fisiopatologia , Estabilidade Proteica , Espalhamento a Baixo Ângulo
10.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 5): 1289-96, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24816098

RESUMO

It is crucial to assign the correct redox and ligand states to crystal structures of proteins with an active redox centre to gain valid functional information and prevent the misinterpretation of structures. Single-crystal spectroscopies, particularly when applied in situ at macromolecular crystallography beamlines, allow spectroscopic investigations of redox and ligand states and the identification of reaction intermediates in protein crystals during the collection of structural data. Single-crystal resonance Raman spectroscopy was carried out in combination with macromolecular crystallography on Swiss Light Source beamline X10SA using cytochrome c' from Alcaligenes xylosoxidans. This allowed the fingerprinting and validation of different redox and ligand states, identification of vibrational modes and identification of intermediates together with monitoring of radiation-induced changes. This combined approach provides a powerful tool to obtain complementary data and correctly assign the true oxidation and ligand state(s) in redox-protein crystals.


Assuntos
Cristalografia por Raios X/métodos , Citocromos c/química , Hemeproteínas/química , Análise Espectral Raman , Alcaligenes/química , Citocromos c/metabolismo , Hemeproteínas/metabolismo , Ligantes , Modelos Moleculares , Oxirredução , Conformação Proteica
11.
Appl Microbiol Biotechnol ; 98(4): 1691-701, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23797330

RESUMO

Newcastle disease virus (NDV) is an infectious agent of a large variety of birds, including chicken, which poses a real threat to the agriculture industry. Matrix (M) proteins of NDV and many other viruses perform critical functions during viral assembly and budding from the host cell. M-proteins are well conserved and therefore are potential targets for antiviral therapies. To validate this, we expressed the NDV M-protein in its native form in Saccharomyces cerevisiae and in inclusion bodies in Escherichia coli. Proper refolding of the recombinant protein produced in E. coli was verified using circular dichroism and infrared spectroscopies and electron microscopy. Immunization of chickens with the NDV M-protein elicited significant serum antibody titers. However, the antibodies conferred little protection against the ND following lethal viral challenges. We conclude that the M-protein is not exposed on the surface of the host cell or the virus at any stage during its life cycle. We discuss how the conserved M-protein can further be exploited as an antiviral drug target.


Assuntos
Vírus da Doença de Newcastle/metabolismo , Proteínas Virais/metabolismo , Dicroísmo Circular , Escherichia coli/enzimologia , Vírus da Doença de Newcastle/genética , Saccharomyces cerevisiae/enzimologia , Proteínas Virais/genética
12.
Proc Natl Acad Sci U S A ; 108(38): 15780-5, 2011 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-21900609

RESUMO

Carbon monoxide (CO) is a product of haem metabolism and organisms must evolve strategies to prevent endogenous CO poisoning of haemoproteins. We show that energy costs associated with conformational changes play a key role in preventing irreversible CO binding. AxCYTcp is a member of a family of haem proteins that form stable 5c-NO and 6c-CO complexes but do not form O(2) complexes. Structure of the AxCYTcp-CO complex at 1.25 Å resolution shows that CO binds in two conformations moderated by the extent of displacement of the distal residue Leu16 toward the haem 7-propionate. The presence of two CO conformations is confirmed by cryogenic resonance Raman data. The preferred linear Fe-C-O arrangement (170 ± 8°) is accompanied by a flip of the propionate from the distal to proximal face of the haem. In the second conformation, the Fe-C-O unit is bent (158 ± 8°) with no flip of propionate. The energetic cost of the CO-induced Leu-propionate movements is reflected in a 600 mV (57.9 kJ mol(-1)) decrease in haem potential, a value in good agreement with density functional theory calculations. Substitution of Leu by Ala or Gly (structures determined at 1.03 and 1.04 Å resolutions) resulted in a haem site that binds CO in the linear mode only and where no significant change in redox potential is observed. Remarkably, these variants were isolated as ferrous 6c-CO complexes, attributable to the observed eight orders of magnitude increase in affinity for CO, including an approximately 10,000-fold decrease in the rate of dissociation. These new findings have wide implications for preventing CO poisoning of gas-binding haem proteins.


Assuntos
Proteínas de Bactérias/química , Monóxido de Carbono/química , Citocromos c'/química , Conformação Proteica , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação/genética , Monóxido de Carbono/metabolismo , Intoxicação por Monóxido de Carbono/metabolismo , Intoxicação por Monóxido de Carbono/prevenção & controle , Cristalização , Cristalografia por Raios X , Citocromos c'/genética , Citocromos c'/metabolismo , Compostos Ferrosos/química , Compostos Ferrosos/metabolismo , Heme/química , Heme/metabolismo , Humanos , Cinética , Modelos Químicos , Modelos Moleculares , Mutação , Oxirredução , Ligação Proteica , Análise Espectral Raman
13.
Sci Rep ; 14(1): 12118, 2024 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802492

RESUMO

Amyotrophic lateral sclerosis (ALS) selectively affects motor neurons. SOD1 is the first causative gene to be identified for ALS and accounts for at least 20% of the familial (fALS) and up to 4% of sporadic (sALS) cases globally with some geographical variability. The destabilisation of the SOD1 dimer is a key driving force in fALS and sALS. Protein aggregation resulting from the destabilised SOD1 is arrested by the clinical drug ebselen and its analogues (MR6-8-2 and MR6-26-2) by redeeming the stability of the SOD1 dimer. The in vitro target engagement of these compounds is demonstrated using the bimolecular fluorescence complementation assay with protein-ligand binding directly visualised by co-crystallography in G93A SOD1. MR6-26-2 offers neuroprotection slowing disease onset of SOD1G93A mice by approximately 15 days. It also protected neuromuscular junction from muscle denervation in SOD1G93A mice clearly indicating functional improvement.


Assuntos
Esclerose Lateral Amiotrófica , Azóis , Isoindóis , Compostos Organosselênicos , Superóxido Dismutase-1 , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Animais , Compostos Organosselênicos/farmacologia , Compostos Organosselênicos/uso terapêutico , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Isoindóis/farmacologia , Camundongos , Azóis/farmacologia , Humanos , Camundongos Transgênicos , Modelos Animais de Doenças , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico
14.
J Synchrotron Radiat ; 20(Pt 2): 383-5, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23412497

RESUMO

This study analyses the potential for laboratory-based size-exclusion chromatography (SEC) integrated small-angle X-ray scattering (SAXS) instrumentation to characterize protein complexes. Using a high-brilliance home source in conjunction with a hybrid pixel X-ray detector, the efficacy of SAXS data collection at pertinent protein concentrations and exposure times has been assessed. Scattering data from SOD1 and from the complex of SOD1 with its copper chaperone, using 10 min exposures, provided data quality in the range 0.03 < q < 0.25 Å(-1) that was sufficient to accurately assign radius of gyration, maximum dimension and molecular mass. These data demonstrate that a home source with integrated SEC-SAXS technology is feasible and would enable structural biologists studying systems containing transient protein complexes, or proteins prone to aggregation, to make advanced preparations in-house for more effective use of limited synchrotron beam time.


Assuntos
Cromatografia em Gel/instrumentação , Proteínas/química , Espalhamento a Baixo Ângulo , Difração de Raios X/instrumentação , Humanos , Chaperonas Moleculares/química , Conformação Proteica , Estrutura Quaternária de Proteína , Superóxido Dismutase/química , Superóxido Dismutase-1 , Difração de Raios X/métodos , Raios X
15.
Artigo em Inglês | MEDLINE | ID: mdl-23545635

RESUMO

The crystal structure of a conserved hypothetical protein, GK0453, from Geobacillus kaustophilus has been determined to 2.2 Å resolution. The crystal belonged to space group P4(3)2(1)2, with unit-cell parameters a = b = 75.69, c = 64.18 Å. The structure was determined by the molecular-replacement method and was refined to a final R factor of 22.6% (R(free) = 26.3%). Based on structural homology, the GK0453 protein possesses two independent binding sites and hence it may simultaneously interact with two proteins or with a protein and a nucleic acid.


Assuntos
Proteínas de Bactérias/química , Geobacillus/química , Sequência de Aminoácidos , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Eletricidade Estática , Homologia Estrutural de Proteína
16.
Biochem J ; 444(2): 219-26, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22414182

RESUMO

NiRs (nitrite reductases) convert nitrite into NO in the denitrification process. RpNiR (Ralstonia pickettii NiR), a new type of dissimilatory Cu-containing NiR with a C-terminal haem c domain from R. pickettii, has been cloned, overexpressed in Escherichia coli and purified to homogeneity. The enzyme has a subunit molecular mass of 50515 Da, consistent with sequence data showing homology to the well-studied two-domain Cu NiRs, but with an attached C-terminal haem c domain. Gel filtration and combined SEC (size-exclusion chromatography)-SAXS (small angle X-ray scattering) analysis shows the protein to be trimeric. The metal content of RpNiR is consistent with each monomer having a single haem c group and the two Cu sites being metallated by Cu(2+) ions. The absorption spectrum of the oxidized as-isolated recombinant enzyme is dominated by the haem c. X-band EPR spectra have clear features arising from both type 1 Cu and type 2 Cu centres in addition to those of low-spin ferric haem. The requirements for activity and low apparent K(m) for nitrite are similar to other CuNiRs (Cu-centre NiRs). However, EPR and direct binding measurements of nitrite show that oxidized RpNiR binds nitrite very weakly, suggesting that substrate binds to the reduced type 2 Cu site during turnover. Analysis of SEC-SAXS data suggests that the haem c domains in RpNiR form extensions into the solvent, conferring a high degree of conformational flexibility in solution. SAXS data yield R(g) (gyration radius) and D(max) (maximum particle diameter) values of 43.4 Å (1 Å=0.1 nm) and 154 Å compared with 28 Å and 80 Å found for the two-domain CuNiR of Alcaligenes xylosoxidans.


Assuntos
Cobre/química , Heme/análogos & derivados , Nitrito Redutases/química , Ralstonia pickettii/enzimologia , Sequência de Aminoácidos , Heme/química , Heme/genética , Dados de Sequência Molecular , Nitrito Redutases/genética , Espalhamento a Baixo Ângulo , Difração de Raios X/métodos
17.
Nat Commun ; 14(1): 3416, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37296134

RESUMO

Quinol-dependent nitric oxide reductases (qNORs) are considered members of the respiratory heme-copper oxidase superfamily, are unique to bacteria, and are commonly found in pathogenic bacteria where they play a role in combating the host immune response. qNORs are also essential enzymes in the denitrification pathway, catalysing the reduction of nitric oxide to nitrous oxide. Here, we determine a 2.2 Å cryoEM structure of qNOR from Alcaligenes xylosoxidans, an opportunistic pathogen and a denitrifying bacterium of importance in the nitrogen cycle. This high-resolution structure provides insight into electron, substrate, and proton pathways, and provides evidence that the quinol binding site not only contains the conserved His and Asp residues but also possesses a critical Arg (Arg720) observed in cytochrome bo3, a respiratory quinol oxidase.


Assuntos
Hidroquinonas , Óxido Nítrico , Óxido Nítrico/metabolismo , Hidroquinonas/química , Oxirredutases/metabolismo , Bactérias/metabolismo
18.
J Am Chem Soc ; 134(3): 1461-3, 2012 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-22239663

RESUMO

Cytochromes c' are pentacoordinate heme proteins with sterically hindered distal sites that bind NO and CO but do not form stable complexes with O(2). Removal of distal pocket steric hindrance via a Leu→Ala mutation yields favorable O(2) binding (K(d) ~49 nM) without apparent H-bond stabilization of the Fe-O(2) moiety, as well as an extremely high distal heme-NO affinity (K(d) ~70 fM). The native Leu residue inhibits distal coordination of diatomic ligands by decreasing k(on) as well as increasing k(off). The connection between distal steric constraints, k(off) values, and distal to proximal heme-NO conversion is discussed.


Assuntos
Alcaligenes/enzimologia , Citocromos c/genética , Citocromos c/metabolismo , Heme/metabolismo , Óxido Nítrico/metabolismo , Oxigênio/metabolismo , Alcaligenes/genética , Alcaligenes/metabolismo , Sítios de Ligação , Citocromos c/química , Heme/química , Heme/genética , Leucina/metabolismo , Mutação Puntual
19.
J Synchrotron Radiat ; 24(Pt 5): 904-905, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28862610
20.
J Synchrotron Radiat ; 19(Pt 1): 19-29, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22186640

RESUMO

The sulfur SAD phasing method allows the determination of protein structures de novo without reference to derivatives such as Se-methionine. The feasibility for routine automated sulfur SAD phasing using a number of current protein crystallography beamlines at several synchrotrons was examined using crystals of trimeric Achromobacter cycloclastes nitrite reductase (AcNiR), which contains a near average proportion of sulfur-containing residues and two Cu atoms per subunit. Experiments using X-ray wavelengths in the range 1.9-2.4 Å show that we are not yet at the level where sulfur SAD is routinely successful for automated structure solution and model building using existing beamlines and current software tools. On the other hand, experiments using the shortest X-ray wavelengths available on existing beamlines could be routinely exploited to solve and produce unbiased structural models using the similarly weak anomalous scattering signals from the intrinsic metal atoms in proteins. The comparison of long-wavelength phasing (the Bijvoet ratio for nine S atoms and two Cu atoms is ~1.25% at ~2 Å) and copper phasing (the Bijvoet ratio for two Cu atoms is 0.81% at ~0.75 Å) for AcNiR suggests that lower data multiplicity than is currently required for success should in general be possible for sulfur phasing if appropriate improvements to beamlines and data collection strategies can be implemented.


Assuntos
Substâncias Macromoleculares/química , Enxofre/química , Difração de Raios X/métodos , Betaproteobacteria/enzimologia , Cobre/química , Cristalização , Cristalografia por Raios X , Nitrito Redutases/química , Software , Síncrotrons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA